

Joe Walnes
Ara Abrahamian

Mike Cannon-Brookes
Pat Lightbody

Java™ Open Source
Programming

With XDoclet, JUnit,
WebWork, Hibernate

01 463620 FM.qxd 10/28/03 8:49 AM Page i

01 463620 FM.qxd 10/28/03 8:49 AM Page xii

Joe Walnes
Ara Abrahamian

Mike Cannon-Brookes
Pat Lightbody

Java™ Open Source
Programming

With XDoclet, JUnit,
WebWork, Hibernate

01 463620 FM.qxd 10/28/03 8:49 AM Page i

Vice President and Executive Group Publisher: Richard Swadley
Vice President and Executive Publisher: Bob Ipsen
Vice President and Publisher: Joseph B. Wikert
Executive Editorial Director: Mary Bednarek
Editorial Manager: Kathryn A. Malm
Executive Editor: Robert Elliott
Senior Production Editor: Fred Bernardi
Development Editor: Kevin Shafer
Production Editor: Pamela Hanley
Media Development Specialist: Kit Malone
Permissions Editor: Carmen Krikorian
Text Design & Composition: Wiley Composition Services

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of mer-
chantability or fitness for a particular purpose. No warranty may be created or extended by sales rep-
resentatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher
nor author shall be liable for any loss of profit or any other commercial damages, including but not lim-
ited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries. Java is a trademark of
Sun Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Pub-
lishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Java Open source programming : with Xdoclet, JUnit, WebWork, Hibernate
(Java Open Source Library) / Joe Walnes ... [et al.].

p. cm.
ISBN 0-471-46362-0 (PAPER/WEBSITE)
1. Java (Computer program language) 2. Open source software. I.
Walnes, Joe, 1978-
QA76.73.J38J3785 2003
005.2'762--dc22

2003020242
ISBN: 0-471-46362-0

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

01 463620 FM.qxd 10/28/03 8:49 AM Page ii

Contents

iii

Acknowledgments xiii

About the Authors xv

Introduction xvii

Part One Introduction 1

Chapter 1 Overview of the Book 3
Using Open Source Technologies 3
Understanding Design and Development Philosophies 5

Test First 5
Less Is More 5
Always Ask the Dumb Questions 6

Exploring the PetSoar Project 6
Sticking to the Basics 7
Summary 7

Chapter 2 Application Overview 9
Looking at Yet Another Pet Store? 9
Understanding the Importance of Maintainability 11
Understanding the Requirements of PetSoar 11
Examining the Architecture and Technologies 12

Looking at the Architecture 12
Looking at Utility Libraries 14
Using Persistence and Searching 14
Using the Web Front End 15

Testing 16
Summary 16

01 463620 FM.qxd 10/28/03 8:49 AM Page iii

Part Two Building Your Open Source Toolbox 17

Chapter 3 Unit Testing with JUnit 19
Types of Testing 19
Using JUnit 20

Features of JUnit 21
Writing a Unit Test 21
Running a Unit Test 23
Running Multiple Tests 25
Everything You Need to Know about JUnit 28

Assertion Methods 28
Exception Handling 29
Test Suites 30
Test Runners 30
Setting Up and Tearing Down the Environment 34
Extensions 37

Summary 38

Chapter 4 Testing Object Interactions with Mocks 39
Testing Object Interactions 39

Exploring Some Pitfalls of Testing State 39
Too Many Dependencies 40
Too Much Exposure 40
Too Much State to Manage 40
Too Hard to Test 41

Exploring the Alternative: Testing Interactions 41
Using Mock Objects 42

Example Scenario 43
Understanding the Role of a Mock Object 44
Understanding the Mock Objects Library 45
Using Dynamic Mocks 46

Creating Mocks 47
Substituting Objects 47
Defining the Expectations 48
Understanding Argument Constraints 48
Verifying Expectations 49
Setting Up Return Values 50

Summary 51

Chapter 5 Storing Objects with Hibernate 53
Understanding the Complexities of Persistence 53
Persisting Objects with Hibernate 2 54

Creating the Persistent Classes 55
Mapping the Classes to a Database 57

<hibernate-mapping> 58
<class> 58
<property> 59
<id> 59
<component> 60

iv Contents

01 463620 FM.qxd 10/28/03 8:49 AM Page iv

Configuring Hibernate 60
Obtaining a Session 63
Storing Objects in the Database 64
Retrieving Objects from the Database 67
Querying Persistent Objects 68
Persisting Relationships Between Objects 70

Persisting Hierarchies of Objects 76
Understanding the Hibernate Toolset 79
Comparing Hibernate with Competing Technologies 79

Hibernate vs. EJB 79
Hibernate vs. JDO 81
Hibernate vs. DAO Frameworks 81

Summary 81

Chapter 6 Model View Controller with WebWork 83
Understanding Model View Controller (MVC) 83

Examining the Model Layer 84
Examining the View Layer 85
Examining the Controller Layer 85
Tying It All Together 85
Looking at Reasons to Use MVC 86

Understanding MVC, WebWork, and XWork 87
Exploring XWork 87
Exploring WebWork 88

Taking an In-depth Look at Actions 89
A Simple XWork Example 90
Configuring XWork 91
Structuring Your Actions (Action Composition) 91
Calling an Action from XWork 93
Using Parameters and the ActionContext 94

Applying Newton’s Third Law of Physics 95
Understanding XWork Results and Action Chaining 96
Examining WebWork Results and the Servlet Environment 96
Configuring WebWork 98
Understanding the Role of the Dispatcher 99

Namespaces 100
Exploring Example Views in JSP and Velocity 101

HelloWorld in JSP 101
JSP Tags 102

Looking at Component-Based Web Development 104
Themes 107
Writing Your Own Component 108
One Small Problem 108

Expressing Yourself 109
Using Basic Expressions 110

Properties 110
Method Calls 111
Static Fields and Method Calls 111

Contents v

01 463620 FM.qxd 10/28/03 8:49 AM Page v

Using Advanced Expressions 111
Dealing with Collections 112
Constructors 113
Context Variables and the Root Variable 113

Understanding the ValueStack 113
Accessing Stack Elements 114
Examples Using the JSP Tags 114

Exploring Type Conversion 115
Digging into a Date Example 115
Specifying Default Conversion Rules 117
Specifying New Conversion Rules 117

Separating Concerns with Interceptors 118
Looking at Configuration and Interceptor Stacks 118
Using LoggingInterceptor 119
Building Your Own Interceptor 120

Validation — A Powerful Interceptor 120
Exploring an Example without XWork Validation Framework 120
Exploring an Example with XWork Validation Framework 122
Using Built-In and Custom Validators 123
Using the Expression Validator 125

Summary 125

Chapter 7 Simplifying Layout with SiteMesh 127
Identifying Problems with Layout 127
Using the Object-Oriented Solution 132

Decorator Design Pattern 133
Composite Design Pattern 134
Combining the Patterns 135

Implementing the Solution with SiteMesh 137
SiteMesh Fundamentals 138
Creating a Decorator 140
Composing Pages 142
Exploring SiteMesh 145

Getting to the Content 145
Mapping Decorators 148

Using Tips and Tricks 149
Group Decorators Together 150
Don’t Be Afraid to Include 150
CSS Is Your Friend 150
Minimize HTML 151
Separate Your Concerns 151

Summary 151

Chapter 8 Adding Search Capabilities with Lucene 153
Understanding the Complexities of Searching 153
Introducing Lucene 154

Understanding the Elements of Lucene 154
Indexing a Document 155

vi Contents

01 463620 FM.qxd 10/28/03 8:49 AM Page vi

Searching Documents 159
Reindexing and Removing an Indexed Document 161
Using Advanced Searching 161
Customizing the Tokenization Process 162

Summary 164

Chapter 9 Generating Configuration Files with XDoclet 165
Introducing XDoclet 165
Understanding Attribute Oriented

Programming with XDoclet 166
Understanding the Syntax of Attributes 168
Running XDoclet 170
Using Advanced Hibernate OR Mapping with XDoclet 173
Using XDoclet for Generating More Sophisticated Artifacts 175
Understanding XDoclet Tasks and Subtasks 179

EJBDoclet 179
WebDoclet 180
JMXDoclet 180
JDODoclet 180
HibernateDoclet 181

Using XDoclet Effectively 181
Summary 183

Chapter 10 Communication and Tools 185
Exploring PetSoar Development 185
Managing Imperfect Communication 188

Communicating in Every Way 188
Using Source Communication 189
Using Communication as a Learning Tool 190

Exploring Our Toolbox 191
Source Configuration Management — CVS 191
Knowledge Management — Wiki 191
Mailing List — Majordomo 192
Real-time Discussion — IRC and Instant Messaging 192
IDEs — IDEA and Eclipse 193
Issue Tracking and Task Management — JIRA 193

Using Continuous Integration 193
Tying the Tools Together 195
Summary 195

Chapter 11 Time-Saving Tools 197
Understanding Utility Components 197
Understanding OSCache 198

Introducing SampleNews.com 198
Using the Loop Test 199
Exploring the OSCache Tag Library 201
Understanding OSCache Concepts 202

Cache Key 202
Scope 202
Duration 203

Contents vii

01 463620 FM.qxd 10/28/03 8:49 AM Page vii

Looking at a Caching Time Example 203
Looking at Advanced OSCache Features 204

Caching Binary content 205
Java API 205
Error Tolerance 205
Disk Persistence 205

Understanding Commons Lang 205
Exploring Most Useful Classes 206
Using Builder Classes 206

Understanding Commons Collections 209
Understanding Commons Logging 211

Looking at Advantages of Commons Logging 211
Looking at a Simple Example 212

Understanding Commons Digester 213
Looking at a Digester Example 213
Understanding Digester Rules 216

Summary 217

Part Three Developing the Application 219

Chapter 12 Setting Up the Development Environment 221
Working from Within the IDE 222

The Problem: IDEs Don’t Automate 223
The Solution: Automated Build Tools 224

Using Ant for All Your Building Needs 225
The Problem: Ant Isn’t the Silver Bullet 225
The Solution: Use What Makes Sense 225

Using the Hybrid Approach 225
Laying Out Your Project 227

Structuring by Type 227
Structuring by Deployment 229
Picking a Structure 230
And What about PetSoar? 230

Managing Unit Tests 231
Understanding Test Types 232
Examining Test Suites, JUnit, and Batch Testing 233

Using Version Control 234
Deploying PetSoar 235
Summary 237

Chapter 13 Understanding Test Driven Development 239
Why Test First? 240

Testing First vs. Testing Last 240
Tests as Documentation 241
Software Design Through Test Driven Development 242

Narrowing the Requirements 242
Understanding Testing Techniques 243

Place Unit Tests in the Same Package As Your Code 244
Never Skip Failing Tests 244
Isolate the Untestable Using Mock Objects 244

viii Contents

01 463620 FM.qxd 10/28/03 8:49 AM Page viii

When to Use Interfaces and Classes 245
Stick with Simplicity 245
Work from the Top Down 246
Use Lots of Small Objects 246
Ensure That Your Test Suite Runs Quickly 247
Avoid Statics and Singletons 247

Testing the TDD Cycle 247
Example Scenario Using TDD 249

Step 1 249
Step 2 249
Step 3 250
Step 4 251

Example Scenario Revisited 251
Step 1 251
Step 2 251
Step 3 252
Step 4 252

Enhancing the Functionality 252
Step 1 252
Step 2 253
Step 3 253
Step 4 254

Summary 254

Chapter 14 Managing Lifecycles and Dependencies of Components 255
Understanding Components and Services 255
Handling Dependencies 256

Using Direct Instantiation 256
Using a Factory 257
Using a Registry 257
Using a Container 258

Understanding the Component Lifecycle 259
Understanding Inversion of Control 260

Examining the Benefits 260
Exploring the Disadvantages 261

Understanding Separation of Concerns 262
Using Containers to Define Scope 262
Using XWork’s Container Implementation 263

Configuring the Container 263
Understanding How the Container Works 264

Testing XWork Components 266
Summary 268

Chapter 15 Defining the Domain Model 269
Considering the Advantages of a Domain Model 269
Tackling the Layers 270

Comparing a Layer-Driven vs. Feature-Driven Approach 270
Choosing Bottom Up, Top Down, or Middle Out 272

Contents ix

01 463620 FM.qxd 10/28/03 8:49 AM Page ix

Identifying the Current Goal 275
Adding a Pet to the Store 275

Implementing the PersistenceManager Using Hibernate 279
Where We Are 288

Retrieving Pets 289
Retrieving a Single Pet 292
Where We Are 295

Persisting the Categories 297
Where We Are 300
Implementing the Category-Pet Relation 301
Where We Are 306

Performance and Maintainability Considerations 306
Summary 308

Chapter 16 Creating a Web-Based Interface 309
Adding a Pet 310

Creating the AddPet Action 310
Creating Views for AddPet 313
Tying It All Together 315

Displaying a Pet 317
Creating the ViewPet Action 317
Refactoring the Actions 321

Editing a Pet 324
Checking Validity 327
Tying It All Together — Take II 328

Get that Pet Out of Here! 329
Refactoring the CRUD 333

Removing Duplication in ViewPet and RemovePet 334
Odd One Out 336
Performing One Last Refactor 338
Decoupling the Validation 340

Changing the Pet 343
Summary 345

Chapter 17 Defining Navigation, Layout, Look, and Feel 347
Componentizing Form Widgets 347
Forming a Better Look and Feel 351
Using a Touch of Style 355
Navigating to a Better User Interface 358
Summary 361

Chapter 18 Implementing Browse and Search Capabilities 363
Defining the Application Requirements 363
Browsing the List of Categories 364
Browsing the List of Pets 366
Searching the Store for Pets 369

Implementing LuceneSearcher 372
Implementing LuceneIndexer 376
Where We Are 386

x Contents

01 463620 FM.qxd 10/28/03 8:49 AM Page x

Implementing Searching of Any Type of Data 386
Where We Are 395
Implementing Full-Text Searches 395
Implementing Pagination 397

Tying It All Together 401
Summary 403

Chapter 19 Adding a Shopping Cart 405
Creating a Shopping Cart 405
Creating the WebWork Actions 408
Checking Out the Shopping Cart 411
Summary 423

Chapter 20 Securing the Application 425
Understanding J2EE Security 426
Simplifying Security 428

Using the HTTP Request Wrapper 429
Using the Security Filter 430
Using the Login Filter 430
Making It All Work in Harmony 432

Using a More Graceful Approach 434
Summary 436

Index 437

Contents xi

01 463620 FM.qxd 10/28/03 8:49 AM Page xi

01 463620 FM.qxd 10/28/03 8:49 AM Page xii

Martin Fowler, despite being busy with his own book, proved invaluable with
his improvements and guidance along the way. Ben Hogan and Erik Hatcher
managed to consistently provide us with an awesome amount of feedback
with little notice. Dan North requires a special mention for not only providing
great reviews but for saving us in the eleventh hour by helping to rewrite a
chapter. Special thanks to Gavin King for fast and accurate review of the
Hibernate-related chapters in the final periods of the book.

Of course, this book would be nothing without the patience of our many
reviewers: Andy Pols, Aslak Hellesoy, Damian Guy, Darren Hobbs, Hooman
Mehr, Ivan Moore, Jason Carriera, Jeremy Stell-Smith, Lisa Van Gelder, Math-
ias Bogaert, Matt Ho, Mike Roberts, Mike Royle, Owen Rogers, Rachel Davies,
Rachel McConnell, Rebecca Parsons, Scott Farquar, Steve Freeman, and Tim
Mackinnon.

Rickard Oberg and Matt Baldree also played an important role in the cre-
ation of this book. Without them, we would never have gotten started.

We would also like to thank the teams behind the Open Source tools that we
used, for providing those excellent tools and responding to our requests. We
thank Bob and the rest of the team at Wiley for constantly supporting us.

Mike would like to thank his co-authors, the Atlassian development team
(Scott, Owen, Anton, Jeff, Bobby, Dave, Edwin); his “work” mates (Mike,
Gavin, Jason, Jeremy, Eugene, Rickard and more); his Sydney mates (Niki,
Alina (Kins), Sarah, Camilla, Will, Hoey, Tex, Kel, Nuts, et al — you know who
you are) and, last, but certainly not least, his family (Mum, Dad, Jace, Tora,
Andrew, James, Holly, and little Phoebe). He’d also like to thank anyone who
read the previous sentence and is still searching for his or her name — he for-
got you and apologizes profusely.

Acknowledgments

xiii

01 463620 FM.qxd 10/28/03 8:49 AM Page xiii

Joe would like to thank all his fellow ThoughtWorkers; it’s a humbling expe-
rience working with them. Special thanks to Dan North for encouraging him
to reach that bit further (not just the top magazine rack) while keeping his feet
on the ground. Paul Hammant always looks out for him and provides solid
experiences that have driven his techniques. Paul, Dan, Laura Waite, and Tim
Bacon have always been there for him when he needed them and have been
excellent coaches, mentors, and friends. Charles Lowell, Chris Stevenson,
Drew Noakes, Duncan Cragg, Gregor Hohpe, Jeremy Stell-Smith, Jonathan
Rasmusson, Martin Fowler, Mike Roberts, and Tim Mackinnon have been a
constant inspiration to work with, amongst many other names. Thanks to
Trevor Mather for the support and for not being what Dan said you’d be.

Joe thanks his family (Mum, Gay Dad and Tilly) for the support. Most
important, Joe thanks his loving fiance, Jaimie, for sticking by and loving him
all the way through the ordeal. Right back at ya!

Ara would like to thank his co-authors; he learned a lot from them during
writing the book. He would also like to thank his colleagues at Eedé and Rox-
cel (Behrang, Nazanin, Iman, Arbi, Nassim, Ali, Ramin, Mohammad and Dr.
Mohammad, Jarek, and Mr. Lehmann) for their support; especially his creative
ex-boss (Hooman) and Dr. Arsanjani (his first coach in software development
techniques); and his best friends (Teodik, Armond, Farzad, Raymond, Telma,
Abtin, Artin, Arin, Nasser, and Ali). Without your support and encourage-
ment, it would have been impossible to engage in such a long and huge proj-
ect. He thanks his family (Mom, Dad, Razmik, Emma, Alice, Seda, and
Narbeh) for their support. Ara loves you all!

Pat would like to thank all his co-workers at Cisco and Spoke who helped
him along the way. Special thanks to Mike Schwartz for his extra effort in pro-
viding invaluable feedback. He’d also like to thank Adam Fleming, Marshal
Dhillon, Michael Artamonov, and Dan Libicki for their willingness to subject
themselves to the ideas presented in this book in a first-hand experience. A
very special thanks goes out to Professor Bill Griswold for being a great
teacher and having a strong influence on this book. Finally, he would like to
thank his friends and family for supporting him throughout the writing
process. Mom, Dad, Chris — you’re the best!

xiv Acknowledgments

01 463620 FM.qxd 10/28/03 8:49 AM Page xiv

Joe Walnes is a consultant for ThoughtWorks (www.thoughtworks.com), a
systems integration company that specializes in Agile development tech-
niques for the enterprise. His areas of expertise lie in Extreme Programming
coaching for developers, design techniques for object-oriented and compo-
nent-oriented systems, and simplifying J2EE development. In his (minimal)
spare time, he works on Open Source projects, many of which can be found at
www.opensymphony.com and www.codehaus.org.

You can read his blog at: http://joe.truemesh.com.

Ara Abrahamian is a freelance consultant specializing in developing Enter-
prise Java solutions. He’s been involved in various J2EE projects all around the
globe, as a consultant or technical leader. His areas of expertise are code gen-
eration, attribute-oriented programming, and software automation tech-
niques. He is also active in many Open Source projects, including XDoclet as
the leader of the project. His other area of interest is adapting lightweight
methodologies such as XP to large distributed teams.

You can read his blog at: http://freeroller.net/page/ara_e.

Mike Cannon-Brookes is the founder of Atlassian (www.atlassian.com), a
cutting-edge J2EE applications and services company in Sydney, Australia.
Atlassian makes top-class J2EE software applications including JIRA, a leading
issue-tracking and project-management system. Mike specializes in building
brilliantly simple, usable J2EE Web applications and also founded JavaBlogs
(www.javablogs.com), a Web-based, Java-focused blog aggregator. He also
founded the OpenSymphony (www.opensymphony.com) project and works
on WebWork, SiteMesh, and other Open Source projects. On weekends, he likes
to be distinctly Australian — drinking, gambling, and enjoying the best coun-
try on earth.

You can read his blog at:http://blogs.atlassian.com/rebelutionary.

About the Authors

xv

01 463620 FM.qxd 10/28/03 8:49 AM Page xv

Pat Lightbody currently lives in San Francisco and works in Palo Alto at a
startup company called Spoke Software, which specializes in enterprise soft-
ware using social networking to enhance sales performance. Before that, he
worked as a software engineer at Cisco Systems and attended the University
of California, San Diego, where he received his B.S. in Computer Science. He
also works on various Open Source projects, primarily WebWork, XWork, and
OSWorkflow, all of which can be found at www.opensymphony.com.

You can read his blog at: http://blogs.atlassian.com/psquad.

xvi About the Authors

01 463620 FM.qxd 10/28/03 8:49 AM Page xvi

In today’s IT environment, Java is a leading technology in the world of enter-
prise development. As management demands more from technology, com-
plexity in infrastructure seems to grow exponentially, leaving many unable to
keep up with the demands of such a fast-paced world. These complexities
can be seen in the over-evolving Java 2 Enterprise Edition (J2EE) specifica-
tions. This unnecessary complexity drove us to discover ways of simplifying
development.

Now, don’t get us wrong; we love J2EE! But why does it take so long to get
stuff done? We (the authors of this book) were all early adopters of J2EE, grap-
pling with concepts and complexities as they evolved. It was painful, but over
time, we started making use of reusable Open Source tools that dramatically
reduced the time taken to develop these applications. We also started ques-
tioning which technologies were actually helping us and which had become a
hindrance.

This book is about using development techniques and Open Source tools to
lower the cost of building enterprise applications. We aim to show you how to
bring these together to build a real-world application while avoiding com-
plexity and embracing simplicity. We will help you extend your knowledge of
Java and the J2EE framework so that you can begin using the millions of dol-
lars of free research and development just waiting to be utilized.

Not only will this book teach you how to utilize Open Source technology
that you can put to work for you immediately; it will also strengthen and
broaden your development philosophies in such a manner that, like us, you
will soon find yourself scratching your head in wonder and asking “Why
didn’t I do this a long time ago?”

Introduction

xvii

01 463620 FM.qxd 10/28/03 8:49 AM Page xvii

Why You Need This Book

This book takes on two goals that will benefit you both immediately and in the
future:

■■ The most immediate goal is that you will become more familiar with
just a few of the hundreds of amazing Open Source technologies avail-
able for use.

■■ Furthermore, the simple techniques and philosophies we shall intro-
duce will be applicable today and long into the future, even when
current technologies may have been replaced by better alternatives.

We shall apply these technologies and techniques by recreating Sun’s Java
Blueprint: the infamous PetStore application. Our implementation of the Pet-
Store will not be an exact carbon copy, but rather an improvement all around,
in terms of usability, architecture, and simplicity. We call this project PetSoar
because the development of the projects just soars along. Outlined here are the
various technologies and skills that are presented throughout this book.

Who Should Read This Book?

Just as this book has two major goals, technology and techniques, there are
also two groups of readers that this book caters to (although usually these two
groups actually consist of the same set of people).

The first group consists of anyone who wishes to learn about cutting-edge
Open Source Java components. In this book, we will take an in-depth look into
several prominent Open Source projects that aid in enterprise development,
including JUnit, Ant, Hibernate, WebWork, SiteMesh, XDoclet, and Lucene. If
you’re not already familiar with these projects, odds are you’re at least famil-
iar with the problems they are trying to solve. We will show both the problems
that each tool addresses, as well as give you a step-by-step guide to using these
tools in a real-world application.

The second group consists of anyone who has grappled firsthand with proj-
ect complexities spinning out of control. We’ve found that these complexities
are actually the result of developers thinking that complex requirements
require complex solutions. Instead, in this book, we will show you how to
apply the principle of simplicity to achieve your goals in the shortest amount
of time. We will do this by following the development of the PetSoar applica-
tion using Test Driven Development (TDD), a practice that exudes the idea that
less is more.

Conventions

In this book, we use various methods of calling text out to you for different
reasons. For example, when we want you to type something, we bold the text

xviii Introduction

01 463620 FM.qxd 10/28/03 8:49 AM Page xviii

that we want you to type, as in “Type ls -l and press Enter.” When we mention
commands, filenames, or directories, we use what’s called monofont (or a
fixed-width font) to call out the text of that item. For example, “As you can see,
the ls command lists two files: fileone.txt and filetwo.lgz, both of
which are located in the directoryone directory.”

How This Book Is Organized
This book is divided into three distinct parts, with the majority of the content
in Parts II and III.

Part I: Introduction

The first part of the book will serve as a roadmap to what we plan to discuss in
the rest of the book. Here we will introduce the tools we are going to cover as
well as discuss the PetSoar application overview and architecture.

Part II: Building Your Open Source Toolbox

The second part of the book will introduce you to the many Open Source pro-
jects that we have come to include in our “developer’s toolbox” over the years
of working with J2EE. We will discuss reasons why each technology is useful,
lessons learned from using the product, and finally alternative Open Source
projects that may offer similar or complementary functionality.

Part III: Developing the Application

The last part of the book is dedicated entirely to using these Open Source pro-
jects to implement various features required by the PetSoar project. In these
chapters, we will also formally introduce you to the development philoso-
phies outlined here and show you how you can successfully meld them into
your professional career, resulting in incredibly successful applications. This
part shows how the technologies and techniques come together to deliver an
application.

While the book has been designed to be read linearly, we know that, because
we are writing to several different audiences, some of you may skip certain
chapters or parts of this book. If you are already a power-user of a particular
technology described in Part II, you can easily skip that section. Or, if learning
a particular tool is all you want to do, head straight for Part II. Or if you are
building an enterprise application that is not Web-based, you can skip the
appropriate chapters in Part III.

Introduction xix

01 463620 FM.qxd 10/28/03 8:49 AM Page xix

Beyond the Book
This book gives you a good start on Open Source tools as well as building real
applications while focusing on simplicity, but the help doesn’t end here. For
starters, this book has a companion Web site that’s located at the following
URL:

http://www.wiley.com/compbooks/walnes

Featured at the site are:

■■ The PetSoar application ready for download for you to try out on your
own personal machine

■■ Any updates and addendums to the book itself

■■ A mailing list to discuss the tools and techniques used in this book with
the authors and other readers

■■ Technology updates to help you keep pace with the advancements in
the tools and technology since publication time

Also, consider checking out J2EE Open Source Toolkit: Building an Enterprise
Platform with Open Source Tools by John T. Bell, James Lambros, and Stan Ng
(John Wiley & Sons: Hoboken, NJ, 2003), another title in the Java Open Source
Library that shows you how to build an enterprise development platform
using Open Source tools, including many of the same tools discussed in this
book. We’ll refer occasionally to that book in this one.

xx Introduction

01 463620 FM.qxd 10/28/03 8:49 AM Page xx

PA R T

One

Introduction

In Part I, we provide a brief introduction of what you can expect throughout
the rest of the book. This is divided into two core sections: Open Source tools
and application development techniques. In Chapter 1, we provide you
with an overview of the tools detailed in this book and then discuss the
philosophies you can expect to see championed. In Chapter 2, we tie those
tools together with the development philosophies by discussing the general
architecture taken to build the PetSoar application. By the end of these two
chapters, you should have a clear idea of what to expect for the remainder
of the book.

02 463620 pp01.qxd 10/28/03 8:49 AM Page 1

02 463620 pp01.qxd 10/28/03 8:49 AM Page 2

3

In this chapter, we briefly discuss the things to come — primarily what the
tools we’ll employ when building PetSoar as well as the development-process
philosophies we’ll be covering.

Using Open Source Technologies

Open Source Software (OSS) is an interesting phenomenon that, in the last few
years, has really begun to show its incredible staying power. With the wide-
spread usage of the Apache HTTP Server, the Linux operating system, and
lately the JBoss application server, it is clear that Open Source technology can
be as good as or better than commercial offerings. Open Source Software also
has many advantages. The most significant being that the source is freely
available, which means that you can customize, tweak, and learn from code
written by your peers. This minimizes risk because you can always modify the
code to meet your custom needs.

It is sometimes challenging to determine whether an individual OSS project
is going to survive. A good metric is whether the project has unit tests and
good test coverage. Another is the size of the community that is both develop-
ing and using the project. By valuing either, you should find it easy for defects
to be addressed as they are discovered. However, the most important factor is

Overview of the Book

C H A P T E R

1

03 463620 Ch01.qxd 10/28/03 8:49 AM Page 3

whether you are willing to work directly with the source code. If you are will-
ing to contribute back to the project or make modifications for your own per-
sonal needs, the public success of the project is largely irrelevant once you’ve
adopted the code as your own. By investing yourself in knowing the project at
a level deeper than just a cursory glance, you can guarantee the success of inte-
gration with your project — even if the OSS project itself is not considered a
widespread “success.”

Through the widespread use of simplicity and decoupling in your applica-
tion design, we will show you how utilizing Open Source technology can actu-
ally reduce the points of failure in your application and increase overall
system stability and robustness while your application remains maintainable
and flexible.

In this book, we draw upon several Open Source products. Some will be
offered under an umbrella organization, such as Apache Jakarta or OpenSym-
phony, while others are more independent, such as Hibernate or XDoclet. Fol-
lowing is a list of the Open Source products presented in this book and in the
PetSoar application:

■■ JUnit and Mock Objects — A test harness and library designed to assist
with rapid and robust unit testing.

■■ OpenSymphony WebWork — A Model-View Controller (MVC) frame-
work that easily allows for pluggable view technologies and extensible
configuration. We present examples of using both of these popular
frameworks.

■■ Hibernate — A transparent and powerful object/relational persistence
and query service.

■■ OpenSymphony SiteMesh — A Web-page layout system and Web-
application integration system that transparently aids in the creation
of large sites with a common look and feel.

■■ OpenSymphony OSCache — A utility component that enables developers
to easily cache slow dynamic sections of Web sites, which results in
pages that load hundreds of times faster.

■■ XDoclet — A code-generation tool originally popularized for Enterprise
JavaBeans (EJB) deployments but now in use for a wide variety of tasks.
We will show how it can be used to simplify the configuration of
Hibernate.

■■ Jakarta Lucene — A high-performance, full-text search engine that is
applicable in any project that demands text-based searching.

■■ Jakarta Commons — A repository of simple, reusable Java components
that is applicable to everyday development.

4 Chapter 1

03 463620 Ch01.qxd 10/28/03 8:49 AM Page 4

Each product we use specializes in simplifying one (and only one) problem.
Leveraging fine-grained OSS components in a larger application design can
produce great time and cost savings.

Understanding Design and Development
Philosophies

Besides the numerous quality Open Source projects that we will introduce and
use in this book, we will also go one step further and show you first-hand,
through the development of PetSoar, how to apply the philosophies presented
here in your own projects. While there are many small techniques and princi-
ples that you’ll find in the remaining chapters, they can all be classified in one
of three categories:

■■ Test First

■■ Less is More

■■ Always Ask the Dumb Questions

Test First
During our careers as software engineers, the authors of this book have all
come to the same conclusion. In order for complex, secure, stable software
applications to succeed, proper testing must take place throughout the entire
development lifecycle. Unfortunately, as the world grows and the pace of busi-
ness increases, the time allocated for proper testing has shrunk to only a frac-
tion of the time that is needed. In this book, we show you that the philosophy
of writing tests before writing your actual code is more than just an academic
proposition by Extreme Programming advocates. Whether you are an
“Extreme” programmer or not, we maintain (and will demonstrate) that prop-
erly designed unit tests written at the onset of a development task can not only
secure the stability of your code, but it can also speed up the development
process with the pleasant side effect of saving your sanity.

Less Is More
Building on the principle of Test First, we also show you that, when given the
choice between “less” and “more,” a software developer will reap the benefits
if “less” is chosen. For example, unless there is compulsory evidence that a
project requires the use of an Enterprise JavaBean server, it is usually advanta-
geous to avoid over-architecting and avoid such heavier implementations.
Such simplicity is the primary belief presented in this book. We show you how you

Overview of the Book 5

03 463620 Ch01.qxd 10/28/03 8:49 AM Page 5

can apply simple, abstract, modular solutions toward your business require-
ments so that, if a heavier implementation is required, it is trivial to scale up
the lighter-weight solution.

Always Ask the Dumb Questions
Before thinking about how any code is to be implemented, take a step back
and ask yourself what you actually need to achieve to meet the business
requirements. Let’s face it. Writing software is the easy part. Writing software
that meets requirements is where we often fall down.

It’s important to get a broad understanding of what the software should do
before even considering how it should be implemented. In many cases, it may
be that J2EE or even Java is the wrong solution to your problem. Always pay
careful attention to what the best solution actually is. Don’t try to fit a solution
to the wrong problem.

To do this, ask the dumb questions. Ask the really dumb questions. The sim-
plest dumb question is “why?” Why does a button need to be placed there?
Why is an extra field needed? Why does a JMS queue need to be used? The
higher up you go (that is, the closer to the requirements and further from the
implementation), the more likely you are to discover something that may
fundamentally change the way you implement the solution. Even if you don’t
discover anything new, you will at least be reassured that you have understood
the requirements.

Only after discovering the broad overall goal of the requirement should you
start thinking about the details of implementation. Before and during imple-
mentation, you should continually ask questions. Ask the dumb questions and
then ask detailed questions related to the fine-grained implementation. These
questions can be answered in the form of a formalized specification document
or a friendly chat by the coffee machine. Only through repeated questioning
can a developer truly pick the brain of the client and implement the best solu-
tion possible. We do not, however, recommend asking these kinds of questions
if you are a certifiable psychic or a mind reader.

Exploring the PetSoar Project

The PetSoar project may have begun as a way to showcase the technologies
and techniques presented in this book, but it is a project that will continue to
grow and flourish long after this book’s publication. By reading this book, you
will begin to understand the development ideologies used during the initial
implementation of PetSoar. However, we highly encourage every reader to
actively seek out the source code of this project and further enhance it by

6 Chapter 1

03 463620 Ch01.qxd 10/28/03 8:49 AM Page 6

applying derivatives of the technologies and philosophies presented here. Pet-
Soar will surely be a very active and dynamic project so that you can continue
to learn and grow as a software developer — even after you’ve read this book.

The Web site for this project is http://www.wiley.com/compbooks/
walnes. Here, you will find Book errata (hopefully, this section will be fairly
desolate) as well as an online demo of PetSoar and downloadable source code.
It is our sincere hope that, if you are not already an Open Source contributor,
the PetSoar project and book could motivate you to begin to actively seek out
and develop alternative products that hold your attention. Lastly, the PetSoar
application presented in this book at the time of publication may or may not be
the same PetSoar you’ll find on the Web site. As time goes on, future iterations
of this project should further increase the simplicity, scalability, robustness,
and general usability of the application.

Sticking to the Basics

As you read this book, remember that the overall theme is less is more —
achieved through simplicity. Simplicity can be a challenging task to undertake,
especially when being bombarded with more and more complex specifications
and products on a daily basis. The best advice we can offer is to take your
time and understand that moving from complexity to simplicity is not an easy
task and may take several project iterations before you truly feel comfortable
developing applications in this manner. If you already embrace this philoso-
phy, we recommend that you use this book as a guide to alternative ways to
implement this development approach.

Summary

This chapter has provided an overview of material to be discussed throughout
this book. We examined Open Source technologies that have played a key role
in the development of the PetSoar application as well as the philosophies we
followed when developing PetSoar. We described in general terms the PetSoar
application, which will serve as the foundation for discussions throughout
this book.

Overview of the Book 7

03 463620 Ch01.qxd 10/28/03 8:49 AM Page 7

03 463620 Ch01.qxd 10/28/03 8:49 AM Page 8

9

This chapter is a broad overview from 30,000 feet of how we use the tools and
techniques discussed in this book to build PetSoar, specifically how the tools
and techniques fit together.

Looking at Yet Another Pet Store?

PetSoar is not unique in its field. There are many other groups implementing
their own pet stores to demonstrate the power of their technologies. Strangely,
there seem to be more pet-store technology demonstrations on the Internet
than applications really trying to sell pets!

Sun originally built their application to demonstrate J2EE. This has been
revised as J2EE has updated. Microsoft built a similar store to show how an
equivalent application can be built with .Net. From this point on, a plague of
stores popped up. Each was built by using different technologies. All were
competing to gain the title for the best store.

The two main benchmarks that have been used in these comparisons are
blatant and easy to prove:

■■ Performance — How many concurrent visitors can use the store, how
fast can the application respond, and how many transactions can be
performed per second.

Application Overview

C H A P T E R

2

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 9

■■ Lines of code — Quite simply, how many lines of code, including config-
uration, the store was implemented in.

While our PetSoar takes the preceding points into account (that is, the appli-
cation must be fast and shouldn’t consist of massive amounts of code), we focus
on something that seems to be less prominent in the other implementations —
maintainability.

10 Chapter 2

THE OTHER STORES

If you’re curious, here’s a short summary of some of the other store
implementations lurking out there.

These implementations change regularly, and the implementation notes
listed here are just to give you a broad overview of the store. For the most up-
to-date details, visit the relevant Web sites.

◆ PetStore: http://java.sun.com/blueprints/code/

This is the original application released by the J2EE Blueprints group of
Sun to act as an example usage of the (then new) J2EE technology stack.
It makes heavy use of JSP, Servlets, EJB, Web services, and JMS. The un-
fortunate downside to demonstrating so much of J2EE is that it’s big and
can be quite confusing.

◆ .Net PetShop: http://www.gotdotnet.com/team/compare/
petshop.aspx

Released by Microsoft to promote .Net, this implementation consists of a
Web-based ASP.NET front end that uses ADO.NET to access the database.
Logic is mostly stored in database-stored procedures or the code behind
(the controller) of the Web pages. The .Net PetShop boasts considerably
fewer lines of code than the Sun implementation. It’s not Java, but it’s
worth a look if you’re interested in .Net.

◆ JPetStore: http://www.ibatis.com/jpetstore/jpetstore.html

Released by iBatis to compete with the .Net PetShop, this implementa-
tion uses JSP and Jakarta Struts for the Web-tier (a Java object-based
domain model), and the iBatis Database Layer to map the objects to
database tables. A Web service is provided by Java API for XML Messag-
ing (JAXM). All technologies powering this application are either standard
J2EE technologies or Open Source products. No stored procedures or
code generation is used.

◆ XPetStore: http://xpetstore.sourceforge.net/

An Open Source implementation that minimizes the lines of code by
making heavy use of code generation, there are two versions of this
available. One uses standard EJB technologies with Struts and JSP, while
the other is a more trimmed-down version that makes use of lighter-
weight technologies such as Hibernate, WebWork, and Velocity. Both use

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 10

Understanding the Importance of Maintainability

Maintainability is the ability to change an application after the initial delivery.
This may be to add new features, improve usability, fix bugs, improve perfor-
mance, or even overhaul the architecture.

It’s short-sighted to assume that, after the initial delivery, things will never
change. Business processes are constantly changing, particularly in the IT
world, and the software must keep up.

Typically, throughout the lifetime of an application, the cost of maintenance
outweighs the cost of initial delivery. On top of that, there’s the additional cost
to the business of not being able to change functionality. Developing for main-
tainability has a higher return on investment in the long run.

Clean and flexible designs, code quality, and testing all contribute to main-
tainability. Unfortunately, as the pressure to reduce time-to-market intensifies,
these values are usually the first to be sacrificed to deliver more quickly. This
is far more expensive in the long run.

The development team should not be responsible for holding back the busi-
ness because they want to change. Therefore, always develop with maintain-
ability in mind.

Understanding the Requirements of PetSoar

Our PetSoar application is to be kept intentionally simple so we can spend
more time emphasizing the techniques to develop the application rather than
showcasing the end result. There are two types of users of the application: a
customer and a store owner.

The requirements are as follows:

■■ A store owner should be able to maintain an inventory of pets that are
currently in stock. The pets should be categorized.

Application Overview 11

XDoclet and SiteMesh. We recommend having a look at this application
because it uses many of the same technologies used in this book.

◆ PetMarket: http://blueprints.macromedia.com/

The PetMarket is an alternative front end to the standard Sun PetStore
built with Macromedia FlashMX. It’s very pretty and demonstrates a nice
alternative to using standard HTML for Web applications. The view layer is
created using Flash, the controller using ActionScript, and the back-end
business logic is encapsulated in standard Java objects. Have a look — it’s
impressive.

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 11

■■ A customer should be able to visit the store’s Web site and browse
through the pets. A customer should be able either to select a category
to view a pet or to perform a text-based search for a pet.

■■ If a customer finds a desirable pet, the customer should be able to add it to
a shopping cart. When the customer is satisfied, he or she should be able
to go to a checkout screen and place an order for all the pets in the store.

To keep the example application simple, this book does not go into the
details of what happens once the order is placed.

Examining the Architecture and Technologies

The core platform used for development is JDK 1.4.x with the Servlet 2.3 and
JSP 1.2 APIs from the J2EE 1.3 standard. It’s worth noting that PetSoar doesn’t
use all J2EE features such as JMS or EJBs. In all cases, we aim to use the sim-
plest tool for the job.

Figure 2.1 shows all these frameworks, along with their places and relation-
ships in the big puzzle of the architecture.

NOTE The technologies used throughout this book are only several of many
possible recommendations. If you prefer to use other technologies, such as
Jakarta Struts instead of WebWork, go ahead and do so. The beauty of Open
Source Java is that it’s very easy to mix and match. All applications should use
the best combination to fit the stated needs, and we don’t agree with a
concrete prescribed technology set.

Looking at the Architecture
The core functionality of the application is made up of a collection of services.
Low-level services provide system functionality, such as indexing a document
or persisting on object. Higher-level services provide business logic, such as
maintaining the pet inventory or processing the shopping cart on checkout.

Services are layered on top of each other to build the application. Each ser-
vice follows the façade design pattern and encapsulates the complexities of
logic and external APIs behind a very simple interface.

Layering services together in this way is known as a service-oriented architec-
ture and, at the expense of more classes, simplifies the code greatly throughout
the application by organizing it into modules that specialize in only doing one
thing and doing it well. Code is clearer and contains less duplication. This
increases the maintainability of the application in the long run.

12 Chapter 2

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 12

Figure 2.1 The components of the application

Applications built with technologies such as Common Object Request Bro-
ker Architecture (CORBA), Enterprise JavaBeans (EJB), and Simple Object
Access Protocol (SOAP) Web services make use of this architecture. However,
these technologies are often distributed, which opens a can of worms for com-
plexity related to security, lookup, and network latency. Our implementation
makes use of the architecture but does not distribute these services. Thereby,
this rids us of these complexities.

JDK 1.4x User Interface Layer

Servlet 2.3

SiteMesh Decorator

ISP 1.2 Pages

Security Servlet Filter

WebWork 2.0

XWork Interceptors

Inversion of Control Container

XWork Actions

Application Layer

Libraries Services POJOs

Jakarta Commons

Hibernate Lucene for Search

Database Layer

Relational Database Lucene Index Files

Application Overview 13

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 13

Plain Old Java Objects (POJOs) are used to represent the business entities
such as pets, categories, or orders. These are defined in simple JavaBean-like
classes. These can be passed among the services.

How we implement and assemble services is explored in Chapter 14 of this
book and the domain model in Chapter 15.

Looking at Utility Libraries
There are a few core frameworks that we use in many places in PetSoar.

Some components from the Jakarta’s Common project are among those.
We use Commons Lang’s reusable utility classes for implementing hash-

Code(), equals(), and toString()methods for the domain objects. It also
has a set of very handy utility classes for working with strings and getting and
setting JavaBean properties via reflection code.

We use Commons Digester to load XML files. Many applications separate
configuration into XML, and Digester simplifies this greatly.

We use Commons Logging to log activities of the site. Logging is a very useful
technique to track what’s going on in the running code. It also helps find bugs
more easily.

All these components are discussed in Chapter 11.

Using Persistence and Searching
Persistence is a very critical part of any enterprise system. PetSoar is imple-
mented to save and load its data to and from relational databases. Any rela-
tional database can be used for storing the data. This is possible because
Hibernate, the framework used by PetSoar for handling persistence of objects,
supports a wide range of relational databases.

Hibernate can persist a standard POJO — provided that we supply a com-
plimentary xml file that defines its mappings to the database. XDoclet, a code-
generation tool that uses JavaDoc comments of the source code, is used for
auto-generating these Hibernate mapping xml files.

Hibernate is discussed in Chapter 5, and XDoclet is explained in Chapter 8.
It’s worth noting that the persistence-specific code isn’t littered throughout

the code base and encapsulated behind dedicated services, which makes the
code much cleaner. This is shown in Chapter 15.

Searching the site for pets is one of the most important features of a pet
shop. Thanks to Jakarta Lucene, PetSoar can handle sophisticated Google-style
full text searches. Lucene is covered in Chapter 8. In Chapter 18, we show how
Lucene is actually integrated into the application.

14 Chapter 2

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 14

Using the Web Front End
PetSoar is a Web application. The entire user interface is accessible through a
Web browser. The Web-based interface and interaction is implemented by
using XWork and WebWork 2. XWork is a generic and extensible MVC frame-
work. WebWork 2 builds upon XWork to provide a rich framework for build-
ing Web applications.

The view layer of PetSoar is implemented as JSP. WebWork comes with
some built-in JSP tags for creating HTML user interfaces. These tags are used
for creating all the screens and forms in PetSoar.

The model is composed of POJO domain objects and services.
The controller consists of a set of Web-independent XWork action classes.

These actions are used for responding to operations initiated by the user via
the browser. So, to respond to a click on a “create order” link, an XWork action
dedicated to that task is defined and triggered by WebWork.

XWork comes with a very strong validation mechanism. Basic validation
such as checking that a mandatory field is indeed filled by the user is pro-
grammed with XWork’s validation system.

XWork and WebWork are discussed in Chapter 6.
Another interesting part of WebWork is support for Inversion of Control (IoC).

IoC is a very powerful pattern for creating and looking up resources and
dependencies of components. As an example, thanks to WebWork’s IoC sup-
port, we don’t have to pollute the action classes with low-level HTTP session
access code for storing a shopping cart in a user’s browser session. We let Web-
Work take care of it, and we instead concentrate on coding the pure business
logic of the cart. IoC is explained in detail in Chapter 14.

SiteMesh is used to further simplify the view layer of the site. SiteMesh is a
framework for defining the layout and navigation for the site. Based on the
Decorator design pattern, SiteMesh decorates each page of the site with layout
and navigation. SiteMesh is discussed in Chapter 7. Chapter 17 also demon-
strates how SiteMesh is used along with Cascading Style Sheets (CSSs) and
other techniques for the layout of PetSoar’s Web interface.

Sign-in and access control is another part of the site. Users can sign up to the
site and thereafter sign in and track their orders. Also, some features are only
allowed to administrators of the site. PetSoar uses a simple servlet filter for pro-
tecting pages. The filter sits in front of the Web pages and prevents anonymous
or unprivileged users from accessing protected pages. Security and access con-
trol are discussed in Chapter 20.

Application Overview 15

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 15

Testing

A very important aspect of developing maintainable applications is testing.
Code should be tested to assure that modifications to it or developing new fea-
tures don’t break.

JUnit is used for unit testing the code. Unit tests test a very fine-grained
piece of functionality in isolation. We also look at Mock Objects, which help you
test classes that would otherwise be very awkward to test in isolation. JUnit
and Mock Objects are covered in Chapters 3 and 4, respectively. Throughout
the book, and especially in Chapters 13 and 14, we also discuss techniques for
writing more effective unit tests and more testable code.

All unit tests are run as part of the automated Apache Ant-based build
process. Ant is a tool for creating build scripts for automating various tasks
such as compiling, testing, packaging, and deploying applications.

As well as covering the tools for unit testing, we also introduce a technique
that can help you design very clean and maintainable code and give you unit
tests for free. This is Test Driven Development (TDD) — a well-used and effec-
tive technique commonly used in projects that follow agile development
methodologies such as Extreme Programming (XP). TDD is introduced in
Chapter 13 and used heavily throughout the Part III of the book to build the
actual application.

Summary

This chapter has provided a glimpse of the kind of technologies we typically
use to build simple and maintainable Web applications. We’ve discovered the
importance of maintainability. We’ve explored the requirements of the PetSoar
application while looking at the basic architecture, utility libraries, and Web
front end of the application.

16 Chapter 2

04 463620 Ch02.qxd 10/28/03 8:49 AM Page 16

PA R T

Two

Building Your Open
Source Toolbox

In Part II of this book, we formally introduce several high-quality Open
Source projects that are best-of-breed solutions for the various problems
they address. While there are always alternatives to the tools discussed here,
we have chosen these tools because we believe they provide the simplest
and highest-quality solutions for our problems. Of course, not everyone will
agree with us, so we discuss alternatives as well.

We cover a wide range of tools: indexing and searching services, MVC
frameworks, persistence layers, code generation, testing, and user interface
decorators. On top of these core tools, we discuss many smaller, but still
very valuable, tools such as logging, caching, and configuration. Finally, we
discuss tools that can assist in communication throughout a project.

05 463620 pp02.qxd 10/28/03 8:49 AM Page 17

05 463620 pp02.qxd 10/28/03 8:49 AM Page 18

19

This chapter introduces unit testing, distinguishes it from other types of test-
ing, and shows how unit testing can help you deliver more robust code with a
lower bug rate in less time. JUnit is used to help achieve this since it’s the de
facto unittesting framework for Java. JUnit is used extensively throughout this
book and is perhaps one of the most important and valuable technologies used
in any development team, which is why it’s introduced early on.

Types of Testing

There are many types of testing strategies used in software development.
Unfortunately, many of these strategies are beyond the scope of this book.

In a typical software project, there are two types of tests that are most impor-
tant: programmer tests and customer tests. These are otherwise known as unit
tests and acceptance tests, respectively.

Unit tests and acceptance tests are equally important and, as such, should
not be overlooked when developing any sort of serious enterprise or large-
scale application.

Table 3.1 compares unit tests and acceptance tests.

Unit Testing with JUnit

C H A P T E R

3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 19

Table 3.1 Unit Tests vs. Acceptance Tests

UNIT TESTS... ACCEPTANCE TESTS...

Defined by developers Defined by customers

Build confidence in developers Build confidence in customers

Test small units in isolation Test the entire application

Low-level High level

Run very quickly May take much longer

Programmatically driven Done by hand or via a script

100% automated Mixture of automation and manual intervention

Not end-to-end End-to-end

Example test: The database pool Example test: The monthly report should
should request more resources contain the correct total for all invoices sent
under high loads. out since the last report.

These two testing techniques complement each other. Neither on its own is
sufficient. Many projects tend to use one but not the other.

■■ Without unit tests, acceptance tests become very tedious to write and
run. Many more combinations need to be tested, since there is less con-
fidence in the underlying code. This results in much more manual
labor.

■■ Without acceptances tests, there is no process for determining when the
software meets the requirements of the customer. This results in vague
development cycles that drag on and on.

The remainder of this book looks at the process of unit testing and how it
can become part of your daily routine as a developer. Aside from explaining
the core tools to help in this, we explore techniques for writing code that is
more robust as well as simpler and easier to maintain.

Using JUnit

JUnit is the unit testing framework for Java. It is the Java member of the xUnit
family, a set of tools for unit testing across many languages. Of course, JUnit is
Open Source and available from http://www.junit.org.

To get started with JUnit, simply download the jar and add it to your
classpath.

20 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 20

Features of JUnit
JUnit provides the following features:

■■ It provides an API that allows you to create a repeatable unit test with a
clear pass/fail result.

■■ It includes tools for running your tests and presenting the results.

■■ It allows multiple tests to be grouped together to run in a batch.

■■ It is very lightweight and simple to use. It takes little time to learn how
it works, and it won’t add bloat to your application.

■■ It is designed by experienced developers for experienced developers.
There is no fluff around the edges, pointless wizards, or marketing
hype. It does exactly what it says on the tin and no more.

■■ It’s extensible. If you want it to do more than it says on the tin, you can
easily extend it to do so.

■■ It’s the de facto unit testing framework for Java. There is a large com-
munity of developers using it. Many free extensions are available to
help you use it in specific situations. Plus, countless articles and books
on the subject are available. This also means it’s integrated with most
major IDEs.

Writing a Unit Test
To demonstrate how to use JUnit, we use it to help implement a simple CSV
parser. For brevity, we will not test every feature required of a CSV parser —
just enough to demonstrate JUnit.

The basic class for doing the parsing looks like the following. We have not
yet tested nor verified that this implementation works correctly. We will do so
by writing unit tests in just a moment.

[CsvParser.java]

package csvparser;

import java.util.StringTokenizer;

public class CsvParser {

private String[] currentLine;

public void parse(String inputLine) {

StringTokenizer tokenizer = new StringTokenizer(inputLine);

currentLine = new String[tokenizer.countTokens()];

Unit Testing with JUnit 21

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 21

for (int i = 0; i < currentLine.length; i++) {

currentLine[i] = tokenizer.nextToken();

}

}

public String get(int columnIndex) {

return currentLine[columnIndex];

}

}

To create a unit test, follow these basic steps:

■■ Create a class that extends junit.framework.TestCase (from the junit jar).

■■ Create a public void method within this class whose name starts
with “test.” The rest of the method name is up to you. For example,
testUpdateAccount().

■■ In this method, call out to the code that is to be tested and verify that
the actual values returned match those that are expected by using the
assertEquals() method.

The simplest test to start with for the CsvParser is to parse a single line and
verify that the results returned match what is expected. Following the previ-
ous guidelines, a test can easily be created to check this:

[TestCsvParser.java]

package csvparser;

import junit.framework.TestCase;

public class TestCsvParser extends TestCase { // extends TestCase

public void testParseSimpleLine() { // method name starts with ‘test’

CsvParser parser = new CsvParser();

parser.parse(“Bill,Gates,555-1234”);

// verify actual results equal those that are expected

assertEquals(“Bill”, parser.get(0));

assertEquals(“Gates”, parser.get(1));

assertEquals(“555-1234”, parser.get(2));

}

}

TI P It is good practice to use descriptive names for test methods that
describe what the test is doing rather than the name of the method it is testing.
This makes tests more readable when they are looked at later.

22 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 22

The first thing the test does is instantiate a new CsvParser before handing it
a sample line to parse. The remainder of the test verifies the results from the
parser equal the expected results.

The assertEquals() method is passed two arguments: The first is the
result expected, and the second is the actual result. If one of the assertions fails,
the test case fails.

NOTE The assertion methods provided by JUnit should not be confused with
the “assert” keyword that was introduced in JDK1.4.

Running a Unit Test
With the test created, it must be executed. JUnit is bundled with a GUI for run-
ning tests. To launch it:

1. Ensure the JUnit jar is in the classpath.

2. Compile the code to be tested and the test cases.

3. Launch the class: junit.swingui.TestRunner. Pass in the fully qualified
class name of the test case to execute.

Figure 3.1 shows the results of executing the test with the JUnit GUI.

Figure 3.1 The JUnit test runner with a failing test. The Red Bar.

Red Bar

Unit Testing with JUnit 23

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 23

The most important feature of the test runner is the large Red Bar in the mid-
dle of the screen. When all the tests are passing, the bar will turn green.

The list box in the middle of the screen lists the tests that failed, shows the
test method, which test class it belongs to, and the reason for the failure. The
box at the bottom of the screen shows the full stack trace of the test failure.

In this case, the test failed because the first assertEquals() was passed a
value of “Bill,Gates,555-1234” instead of what was expected. Looking care-
fully, we can see that this is happening because StringTokenizer, by default,
tokenizes on whitespace characters and nothing else. However, we really want
to tokenize on commas. We’ve found a bug!

With the failing test in place, it is now easier to fix the CsvParser class since
there is a simple indication as to whether it works — the Green Bar. To imple-
ment it, the StringTokenizer class can be passed a second argument to the con-
structor, namely the strings to tokenize on:

[CsvParser.java]

package csvparser;

import java.util.StringTokenizer;

public class CsvParser {

private String[] currentLine;

public void parse(String inputLine) {

currentLine = new String[tokenizer.countTokens()];

for (int i = 0; i < currentLine.length; i++) {

currentLine[i] = tokenizer.nextToken();

}

}

public String get(int columnIndex) {

return currentLine[columnIndex];

}

}

Recompiling the code and running the test again yields a Green Bar (see Fig-
ure 3.2). The CsvParser works.

TI P Although the classes have to be recompiled between each change and
running the test, the JUnit test runner is smart enough to detect that the classes
have been recompiled and will automatically reload them without having to be
restarted. This shaves considerable time from running tests since the JVM
startup overhead is removed for individual test runs.

24 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 24

Figure 3.2 The JUnit test runner with a passing test. The Green Bar.

Running Multiple Tests
To add more unit tests, simply create more methods in the test class.

The TestCsvParser currently has only one basic test defined. This is not
enough to be confident that it works correctly.

A second test can be added to ensure it can parse multiple lines:

[TestCsvParser.java]

package csvparser;

import junit.framework.TestCase;

public class TestCsvParser extends TestCase {

public void testParseSimpleLine() {

// ...

}

public void testParseMultipleLines() {

CsvParser parser = new CsvParser();

parser.parse(“Fred,Flintstone,555-1111”);

assertEquals(“Flintstone”, parser.get(1));

parser.parse(“Barney,Rubble,555-2222”);

Green Bar

Unit Testing with JUnit 25

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 25

assertEquals(“Rubble”, parser.get(1));

}

}

Now, running the test class again — exactly as before — runs both tests.
JUnit automatically runs all methods starting with the name “test” in a class.

This test passes the first time. The implementation of CsvParser was just too
good.

Now we can try testing a more awkward situation, such as what happens
when one of the values in the CSV line is empty.

[TestCsvParser.java]

package csvparser;

import junit.framework.TestCase;

public class TestCsvParser extends TestCase {

public void testParseSimpleLine() {

// ...

}

public void testParseMultipleLines() {

// ...

}

public void testEmptyValues() {

CsvParser parser = new CsvParser();

parser.parse(“Madonna,,555-9999”);

assertEquals(“Madonna”, parser.get(0));

assertEquals(“”, parser.get(1));

assertEquals(“555-9999”, parser.get(2));

}

}

Running this test results in a Red Bar! The testEmptyValues() test failed
(see Figure 3.3), which reports the following error:

expected: <> but was : <555-9999>

NOTE When displaying error messages, JUnit surrounds values with < and >
for clarity.

26 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 26

Figure 3.3 That Red Bar again — catching a potential bug

Looking closer, we can see the second assertion is failing. When the Csv-
Parser encounters a blank token, it skips it and returns the next value along
instead. This is clearly not the desired behavior.

Unfortunately, this is because java.util.StringTokenizer is being used to split
the string up. This class ignores blank tokens. So, it may not be possible to use
it in the CsvParser.

Not a problem. With the unit test is in place, it should be trivial to rip out
the guts of the CsvParser and replace it with something that is up to the
task. Hunting around the JDK API docs, we can see there’s a more effective
way to split strings by using String.split(), which is introduced in
JDK1.4.

The CsvParser can be improved to make use of that instead.

[CsvParser.java]

package csvparser;

public class CsvParser {

private String[] currentLine;

public void parse(String inputLine) {

Red Bar

Unit Testing with JUnit 27

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 27

currentLine = inputLine.split(“,”);

}

public String get(int columnIndex) {

return currentLine[columnIndex];

}

}

Now, the test class can be run, and all of our previously created unit tests can
check that the new implementation conforms to the same specification as the
previous one.

Everything You Need to Know about JUnit
So far, this chapter has introduced the core of JUnit. To finish the JUnit intro-
duction, we can look at everything else you need to know about it to get by on
a daily basis. Be thankful that there’s not a lot to learn.

Assertion Methods

A number of methods are available to perform assertions from tests. Each
method has two forms, one of which has an additional first argument for report-
ing an error message upon failure (see Table 3.2). This is useful if you have many
assertions in a single test method, and it isn’t obvious which is failing.

Table 3.2 Assertion Methods

METHOD DESCRIPTION

assertEquals(Object expected, Object actual); Check that two values are
assertEquals(String message, Object expected, equal by using the standard

Object actual); Object.equals() method.
Overloaded versions of this
method also exist for all
primitive types.

assertTrue(boolean condition); Check that a value
assertTrue(String message, boolean evaluates to true.
condition);

assertFalse(boolean condition); Check that a value
assertFalse(String message, evaluates to false.

boolean condition);

assertNull(Object value); Check that a value is null.
assertNull(String message,Object value);

28 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 28

Table 3.2 (continued)

METHOD DESCRIPTION

assertNotNull(Object value); Check that a value is not
assertNotNull(String message, Object value); null.

assertSame(Object expected, Object actual); Check that two values are
assertSame(String message, Object expected, the same — that is, the

Object actual); same reference.

assertNotSame(Object expected, Object actual); Check that two values are
assertNotSame(String message, Object expected, not the same reference.

Object actual);

fail(); Fail the test, no matter
fail(String message); what. An example of when

this is useful appears in
the next section.

Exception Handling

It is common for code under test to call methods that can throw checked excep-
tions. Rather than using ugly try/catch clauses in the test case, the test method
can just have the throws clause in its signature.

public void testSomething() throws IOException {

Something s = new Something();

s.doStuff(new FileReader(“...”);

// ...

}

If an exception is thrown when the test is executed, JUnit will catch, fail the
test, and report the failure in the test runner.

To specifically verify that an exception has been thrown, a try/catch block
can be used that causes the test to fail if it gets to a certain point without
encountering an exception.

public void testAnExceptionIsThrown() {

Something s = new Something();

try {

s.processNumber(“cat”);

fail(“Expected an exception”);

} catch (IllegalArgumentException goodException) {

// good - this was expected.

}

}

Unit Testing with JUnit 29

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 29

Test Suites

The JUnit test runner is capable of running only a single test class at a time.
This is problematic because, as soon as you get beyond one test class in the sys-
tem, you will need a way of running them all in one go.

Test suites come to the rescue. A test suite is a test class that aggregates the
tests from other classes into one big test.
The steps to creating a test suite are as follows:

1. Create a normal class.

2. Create a single method in the class with the signature public static
junit.framework.Test suite().

3. Within that method, instantiate a new junit.framework.TestSuite
instance.

4. Add the test classes to be included in the suite by using the TestSuite
.addTestSuite(Class testClass) method.

5. Return the suite.

For example, to create a test suite that includes the TestCsvParser and
TestSomething classes:

package csvparser;

import junit.framework.Test;

import junit.framework.TestSuite;

public class MyTestSuite {

public static Test suite() {

TestSuite suite = new TestSuite();

suite.addTestSuite(TestCsvParser.class);

suite.addTestSuite(TestSomething.class);

return suite;

}

}

Now, to run both test classes in one batch, invoke the test runner. Pass the
name of the test suite as an argument instead of an individual test class.

Test Runners

So far, this chapter has used the junit.swingui.TestRunner application for
running tests. This is not the only option.

30 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 30

Figure 3.4 The swing test runner

Swing Runner

This is the most commonly seen test runner. As shown in Figure 3.4, this test
runner provides plenty of visual feedback, such as the progress of the cur-
rently executing test and the huge Green/Red Bar. One advantage this test
runner has over the others is that it can automatically reload classes without
having to restart the JVM on each execution. Because of this test runner, when
we refer to Green/Red Bar, we mean that a test is passing or failing.

Text Runner

Designed for the diehard console geeks, the text runner is free from fluffy
GUIs. It outputs the results of the tests in a concise view on the console.

The console test runner has an advantage in that it can easily be called from
other applications as well as build files and scripts. It returns a non-zero return
code if there are any failures.

When code passes, the test text runner displays the following:

...

Time: 0.191

OK (3 tests)

When code fails, the test text runner displays the following:

...F

Time: 0.03

Unit Testing with JUnit 31

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 31

There was 1 failure:

1) testEmptyValues(csvparser.TestCsvParser) ComparisonFailure:

expected:<> but was:<555-9999>

at csvparser.TestCsvParser.testEmptyValues(TestCsvParser.java:29)

FAILURES!!!

Tests run: 3, Failures: 1, Errors: 0

Ant JUnit Task

Jakarta Ant comes bundled with a custom JUnit task to simplify the invocation
of JUnit from the build file.

To use it, copy the junit jar file into the ANT_HOME/lib. This enables the
<junit> task to be used.

The <junit> task can run individual test classes, including test suites:

<target name=”test” depends=”compile” description=”Run unit tests”>

<junit>

<classpath>

<fileset dir=”lib”/>

<pathelement path=”build”/>

</classpath>

<test name=”csvparser.TestCsvParser”/>

<test name=”csvparser.TestSomething”/>

</junit>

</target>

It can also run all test classes in a directory that match a pattern:

<target name=”test” depends=”compile” description=”Run unit tests”>

<junit>

<classpath>

<fileset dir=”lib”/>

<pathelement path=”build”/>

</classpath>

<batchtest>

<fileset dir=”src”>

<include name=”**/*Test*.java”/>

</fileset>

</batchtest>

</junit>

</target>

The default behavior for the <junit> task is to create no output if the tests
pass or a single one-liner stating a failure if any of the tests failed.

[junit] TEST csvparser.TestCsvParser FAILED

If all you care about is whether there are any failures, this is enough. However,
to diagnose why the tests have failed, you typically need more information. The

32 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 32

<junit> task can have nested <formatter> elements to specify how the test
results are formatted.

Following are three types of formatter elements:

■■ brief — Shows a brief summary of why a test failed

■■ plain — As brief as the preceding element, but also includes details of
how long each test took to run

■■ xml — Verbose output that includes as much information as possible
about the test, including system properties passed to the test, any output
to System.out or System.err, timings of each test, and details of failures

The brief and plain formatters are useful for viewing. Whereas, the xml for-
matter is suited for processing by other applications to obtain information
about the test results.

By default, a formatter will output the results to a file in the current direc-
tory, one file per test class. To output the results to the console, the
usefile=”false” attribute can be used.

The following target outputs a brief summary of test failures to the console
and a more verbose test report in XML to files named after the tests.

<target name=”test” depends=”compile” description=”Run unit tests”>

<junit>

<classpath>

<fileset dir=”lib”/>

<pathelement path=”build”/>

</classpath>

<test name=”csvparser.TestCsvParser”/>

<test name=”csvparser.TestSomething”/>

<formatter type=”xml”/>

<formatter type=”brief” usefile=”false”/>

</junit>

</target>

The output to the console is as follows:

[junit] Testsuite: csvparser.TestCsvParser

[junit] Tests run: 3, Failures: 1, Errors: 0, Time elapsed: 0.11 sec

[junit] Testcase: testParseSimpleLine took 0.01 sec

[junit] Testcase: testParseMultipleLines took 0 sec

[junit] Testcase: testEmptyValues took 0.01 sec

[junit] FAILED

[junit] expected:<> but was:<555-9999>

[junit] junit.framework.ComparisonFailure: expected:<>

but was:<555-9999>

[junit] at

csvparser.TestCsvParser.testEmptyValues(TestCsvParser.java:20)

Unit Testing with JUnit 33

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 33

[junit] Testcase: testEmptyValues

[junit] TEST csvparser.TestCsvParser FAILED

IDE Integrations

Many modern IDEs provide JUnit integrations to allow tests to be easily
launched from the environment. Besides convenience, this also allows the
debugger to be used to track down problems with little effort.

In most cases, these are simply shortcuts for compiling the tests and launch-
ing the JUnit test runner. Don’t underestimate the value of this. It’s incredibly
useful to have a one-click compile and be able to view test results.

A few of the IDEs go one step beyond that and provide a JUnit runner
integrated into the development environment. That’s what integrated develop-
ment environments are supposed to do, right? This prevents the need for having
to switch between windows, which often slow because of garbage collection kick-
ing in on window switches, and allows easy cross-referencing of test results with
code. That is, you can click a test failure and jump to the line of code that caused it.

Figure 3.5 and Figure 3.6 show examples of IDE integrations.

TI P If your IDE does not provide JUnit integration, it’s not the end of the
world. Assuming you can launch Java applications from the IDE, you can launch
the JUnit test runner as if it were one of your own classes. If the environment
supports macros, it may be possible to wire up a shortcut key to run the current
test case. Explore your environment. It’s worth investing a little effort to make
day-to-day development faster. And don’t forget about the debugger!

Setting Up and Tearing Down the Environment

It is common for tests to have to set up the environment to a known state
before running. This could include creating a set of objects populated with
known values or connecting to a database. Likewise, many tests must ensure
that the environment is cleaned up correctly before proceeding, such as closing
resources like database connections or file streams. This environment is often
referred to as a fixture in the JUnit and other xUnit family documentation.

This can lead to duplication in individual test methods, since each test
requires a similar setup, and nasty try/finally blocks to ensure resources are
closed correctly.

public class TestDatabase extends TestCase {

public void testStuff() {

Database db = new Database(“localhost”);

db.open();

try {

// ... some test code

34 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 34

} finally {

db.close();

}

}

public void testMoreStuff() {

Database db = new Database(“localhost”);

db.open();

try {

// ... some more test code

} finally {

db.close();

}

}

}

Figure 3.5 JUnit integration in Eclipse

Unit Testing with JUnit 35

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 35

Figure 3.6 JUnit integration in IntelliJ IDEA

Fortunately, JUnit provides a mechanism for ensuring that a piece of code is
run before and after each test method in a class, regardless of whether the test
passed, failed, or threw an exception.

To set up and tear down tests correctly, simply override the protected
setUp() and tearDown() methods, respectively. Thus, the previous code
could be simplified as follows:

public class TestDatabase extends TestCase {

private Database db;

protected void setUp() {

db = new Database(“localhost”);

db.open();

}

protected void tearDown() {

db.close();

}

public void testStuff() {

// ... some test code

36 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 36

}

public void testMoreStuff() {

// ... some more test code

}

}

This is somewhat more readable, don’t you think? The duplicated clutter
from the test methods has been removed.

When JUnit executes the test method, the following methods are called in
order. Between each group of setup/test/teardown blocks, a new instance of
the test case is created. This means that one test cannot be dependant on the
state of another test, which is always a good thing.

Instantiate test class.

Call setUp().

Call testStuff().

Call tearDown().

Instantiate test class.

Call setUp().

Call testStuff().

Call tearDown().

TI P A good practice is to ensure that your unit tests correctly set up and tear
down the full environment correctly. This allows tests to be instantly run in
isolation or as part of a batch in an automated manner without added manual
intervention.

Extensions

To complement JUnit, many tools are available from http://www.junit
.org/. This list is ever-changing, and it’s worthwhile to check up on it from
time to time to see if there’s anything there that can help you.

Some of the more useful add-ons include the following:

■■ XMLUnit — A collection of assertions for comparing the structure
of XML documents or specific subsets. See http://xmlunit.
sourceforge.net/

■■ jWebUnit — A library for interacting with Web applications over HTTP
from unit tests. See http://jwebunit.sourceforge.net/

Unit Testing with JUnit 37

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 37

■■ JUnitPerf — A JUnit extension that allows tests to be run repeatedly by
simultaneous threads to test the performance and concurrency of code.
See http://www.clarkware.com/software/JUnitPerf.html

■■ Cactus — A toolkit to allow unit tests that run in remote servers, such
as application server or Servlet engines, to be tested. See http://
jakarta.apache.org/cactus/

For a more detailed look at JUnit, and many of its extensions, refer to the
book JUnit in Action by Vincent Massol with Ted Husted (Greenwich, Conn:
Manning Publications Company, 2003).

Summary

In this chapter, we looked at how writing unit tests in JUnit can help you
quickly find bugs and make changes to your code without the worry of break-
ing things — just as we did with the CsvParser. This safety net speeds up
development because less time is spent worrying about what might be broken
if a change is made. We also examined the core features of JUnit, including test
fixtures (environments) and various assertion methods. Both of which will be
very useful once you begin writing large test suites.

Chapter 4 expands on unit testing by looking at how to test object collabo-
rations by using a technique known as mock objects.

Chapter 13 looks beyond the technology and into a technique known as Test
Driven Development that can radically change the way code is developed.

38 Chapter 3

06 463620 Ch03.qxd 10/28/03 8:49 AM Page 38

39

Chapter 3 looks at the basics of unit testing and demonstrates how a fairly
straightforward class can be tested. This chapter expands on these points and
looks at the problems associated with testing classes in larger applications that
interact with other classes.

Using mock objects or mocks is a technique that allows you to unit test how
objects interact with each other. In addition, we introduce the Mock Objects
Library, which provides the necessary infrastructure for using this technique.

Testing Object Interactions

In a typical JUnit test, some data is set up that is passed to the code under test,
and the return value is verified. All this does is test data — or state.

Exploring Some Pitfalls of Testing State
Although testing state is relatively straightforward, when it comes to building a
real application, it has some downsides. These downsides include the following:

■■ Too many dependencies

■■ Too much exposure

Testing Object Interactions
with Mocks

C H A P T E R

4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 39

■■ Too much state to manage

■■ Too hard to test

Too Many Dependencies

A unit test is meant to test just a small unit of code.
Sometimes, you can be testing a class that uses another class that uses

another class that uses another class that uses another class and so on.
This can lead to a lot of required setup work and have a high execution cost.

A single method may require many other objects to be instantiated, including
external resources such as files or database connections.

Besides the high execution cost of this, it also makes tests harder to manage.
If the behavior of one class is changed, this could bubble up and affect all the
classes that depend on it. In turn, it could cause all the tests for these classes to
fail. This makes it difficult to change the behavior of systems without causing
a test maintenance nightmare.

Too Much Exposure

One of the many benefits of Object Oriented Programming is that objects
encapsulate data and behavior by exposing an interface to work with. If using
an object, you need to know what it does but not necessarily how it does it.

For example, a system can contain an OrderDispatcher class that is responsi-
ble for ensuring orders are dispatched to the warehouse. In order to test any
other external class that may interact with this class, the OrderDispatcher would
have to be opened up to allow the unit test to check if a particular order has
been dispatched. This would require the class to expose the orders it contains.

This violates encapsulation. What the OrderDispatcher does with orders is
its own business. By exposing the data structure of the underlying orders, you
require knowledge about the internals of the class. This also makes it harder to
maintain the class. It is possible that it would make more sense to store the
orders in a hashtable rather than a list or even to fire them onto a JMS queue
and forget about them. These details should not be exposed by the class.

Too Much State to Manage

Setting up the environment and tearing it down again is complicated. There
are a lot of variables to consider in a large system, and it’s often just too com-
plicated or costly to do for each unit test.

A tell-tale sign of this is that, in order to set up a class for a unit test, you
must load a properties file, instantiate a factory, connect to a database, set up
some context objects, and so on. In each of these processes, there’s a lot of state

40 Chapter 4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 40

to consider, and it can make tests tedious to write and brittle because the struc-
ture of these items changes.

Too Hard to Test

Some APIs are difficult to test against. These can be standard JDK or J2EE
APIs, third-party libraries, or your own code.

An obvious example is testing that an e-mail has been sent and contains the
correct body. To do this, you have to execute the code under test, then create
some more code to log in to an e-mail account, download the messages, search
for the correct message, and test that it contains the correct body. Ouch!

Besides being complicated to write, there are many other factors that make
this a brittle test. The test requires a mail server for delivery to be available
plus a mail server for picking up mail. If these are separate servers, the test
mail may fail because the mail hasn’t been transferred quick enough between
the two. If multiple developers run the test at the same time, the tests could get
the messages muddled up.

Again, because of the many layers that are built on top of this, there are
many tests in your application that depend on this fragile testing technique.

A less obvious example is when you want to test how code behaves in situ-
ations that are harder to simulate in tests, such as a JDBC driver drops a
connection midway through a transaction.

Exploring the Alternative: Testing Interactions
An alternative to testing state is to test the interaction of objects. That is, verify
that one object calls methods on another object in a certain way.

To test whether a particular button on a coffee machine adds milk to the cof-
fee, the test can be written in two ways:

■■ Testing State — Does the Coffee.getIngredients() method con-
tain milk?

■■ Testing Interaction — Was the Coffee.addIngredient() method
called with milk as an argument?

From the OrderDispatcher example used previously:

■■ Testing State — Does the order exist in the list of dispatched orders?

■■ Testing Interaction — Was the order dispatched?

From the email example used previously:

■■ Testing State — Is the message in the mailbox?

■■ Testing Interaction — Was the message sent?

Testing Object Interactions with Mocks 41

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 41

Table 4.1 Testing State vs. Testing Interaction

PROBLEM WITH CONSEQUENCE OF
TESTING STATE TESTING INTERACTION

Too many dependencies Interactions can be tested without worrying
about what the dependencies actually do. So
long as the dependencies are interacted with
correctly, the test can pass. This eliminates the
need for dependencies of dependencies to be
set up.

Exposing too much The internals of objects remain internal. The
state is never interrogated.

Too much state to manage With fewer external dependencies to set up,
less state must be managed from tests.

Some things are very hard to test It’s less important what the hard-to-test
dependencies actually do when executing the
test so long as the interactions with them can
be tested.

Although the difference between the two approaches is subtle, it’s enough
to address many of the pitfalls related to testing state. Table 4.1 looks at how
testing interaction overcomes many of the problems associated with testing
state.

Testing interactions sounds great in theory, but they can be very difficult to
put into practice. The next section shows how easy it can be.

Using Mock Objects

A technique to help test the interactions of objects in isolation is to use a mock
object. The remainder of this chapter explores what mock objects are and how
to use them.

A mock object is often referred to simply as a mock.

NOTE To get more information on mock objects, visit http://www.
mockobjects.com/. This site contains articles, frequently asked questions,
and relevant links related to the subject.

42 Chapter 4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 42

Example Scenario
Here’s the scenario. A checkout facility is required that is responsible for pro-
cessing a customer’s shopping cart, invoicing the customer, and dispatching
the customer’s order. This entails five objects:

■■ Customer — Provides information about the customer making the
purchase

■■ ShoppingCart — Provides information about what the customer is
purchasing

■■ Invoicer — Sends an invoice via e-mail to the customer and a copy to the
accounts department’s mainframe

■■ OrderDispatcher — Sends messages to the warehouse that instructs an
order to be dispatched

■■ Checkout — Encapsulates the process required to complete the transac-
tion, sends an invoice for the contents of the shopping cart, and requests
the order dispatch

Figure 4.1 shows this process.

Figure 4.1 Class interactions

Customer

ShoppingCart

Invoicer

OrderDispatcher

Checkoutpassed in calls

code under test

Testing Object Interactions with Mocks 43

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 43

For this scenario, the class being tested is Checkout. The interfaces for the
other classes look like this:

public interface Customer {

String getName();

String getAddress();

String getEmail();

long getNumber();

// more...

}

public interface ShoppingCart {

long[] getItemNumbers();

float getTotalAmount();

// more...

}

public interface Invoicer {

void invoiceCustomer(long customerNumber,

String customerEmail,

float amount);

}

public interface OrderDispatcher {

void dispatchItem(long itemNumber,

String name,

String address);

}

Each of these interfaces will have a corresponding class implementation that
has not been shown here for brevity. We recommend using interfaces in this
way to help separate the details of what a class does from how a class does it.

Although not strictly necessary in many circumstances, this interface/
implementation separation emphasizes the fact that classes should encapsulate
the internals of how they work and provide clients to the class a simplistic API
to work with. Even though this API may never be used outside of your project,
thinking in terms of small APIs can greatly improve the design of your code,
which, of course, leads to simpler enhancements, evolution, and maintenance.

Another benefit of separating interfaces in this way is that it helps solve the
problem of testing the Checkout class by using mock objects.

Understanding the Role of a Mock Object
Mock objects allow the classes surrounding the class under to test to be
replaced with fake or mock versions. This allows a class to be tested in isola-
tion from its dependencies.

44 Chapter 4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 44

Because the interfaces from the dependencies have been separated from their
implementations, a new implementation of the class can be substituted —
the mock.

When testing a class, a mock is set up for each dependency that class has
and is then passed to the class under test. The class under test thinks it’s
dealing with real objects; however, these mocks are merely simulating the
environment to enable isolated and thorough testing.

Each unit test customizes the behavior of the mock, depending on what
functionality needs to be tested in the class under test. For each method a mock
simulates, the following criteria can be set up:

■■ Expectations — How the mock expects the code under test to interact
with it. If these expectations aren’t met, the test will fail.

■■ Return values — Any values the mock may need to return to the code
under test.

Looking back at the scenario, to test that the Checkout class talks to the
OrderDispatcher correctly, a mock OrderDispatcher can be substituted in the
test that verifies that its methods are called correctly, as shown in Figure 4.2.

Understanding the Mock Objects Library
To help out in using mock objects, you can use the Open Source (yay!) library
available from www.mockobjects.com, which is aptly called the Mock
Objects Library.

Figure 4.2 Checkout talks to mock OrderDispatcher.

Customer

ShoppingCart

Invoicer

Mock OrderDispatcher

Checkoutpassed in calls

code under test

Testing Object Interactions with Mocks 45

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 45

The Mock Objects Library contains the following parts:

■■ An expectation library to help define the expectations when creating
mock objects

■■ Alternative APIs for many of the common JDK and J2EE libraries,
including network sockets, I/O, JDBC, Servlets, JMS, JNDI, and Java-
Mail. These alternative APIs extend the conventional APIs to include
clean interface separations from implementations, which allows code
that depends on these interfaces to be passed mock implementations —
as well as any other custom implementation — as needed.

■■ Mock implementations for the APIs mentioned previously

■■ A library for dynamically creating mocks at runtime from your unit
tests without having to define extra classes. This uses dynamic proxies.

NOTE Dynamic proxies are a feature added to Java 1.3. As you may know, the
Proxy Pattern is nothing more than providing implementation through indirection.
Essentially, a class can implement an interface and, rather than contain any real
logic or computation, it can just redirect calls to another object — hence the name
proxy. A dynamic proxy is the same thing. The only difference being that the proxy
implementation is created at runtime. This is perfect for creating fake implemen-
tations of your services inside of unit tests.

You do not need to know how to use dynamic proxies to use the mock objects
framework. However, if you’re interested, you can read more about it in the
JavaDoc for java.lang.reflect.Proxy.

Using Dynamic Mocks
The most useful part of the Mock Objects Library is the ability to rapidly cre-
ate a mock implementation of any interface using a dynamic proxy.

Following is a short tutorial to get you started with the library to help test
the Checkout class from the previous scenario. The Checkout class looks
like this:

public class Checkout {

private OrderDispatcher orderDispatcher = new OrderDispatcherImpl();

private Invoicer invoicer = new InvoicerImpl();

public void process(ShoppingCart shoppingCart, Customer customer) {

// send invoice

invoicer.invoiceCustomer(customer.getNumber(),

customer.getEmail(),

cart.totalAmount());

46 Chapter 4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 46

// dispatch items

long[] itemNumbers = cart.getItemNumbers();

for (int i = 0; i < itemNumbers.length; i++) {

orderDispatcher.dispatchItem(itemNumbers[i],

customer.getName(),

customer.getAddress());

}

}

}

Creating Mocks

Creating mocks is easy. Simply instantiate the com.mockobjects.dynamic
.Mock class, and pass the interface you intend to mock in the constructor.

For our scenario, we can set up the mock Invoicer and OrderDispatcher like so:

Mock orderDispatcher = new Mock(OrderDispatcher.class);

Mock invoicer = new Mock(Invoicer.class);

Substituting Objects

To get the class under test (Checkout) to use the mocks, the real Invoicer and
OrderDispatcher instances need to be substituted for the mocks. There are
many ways to do this. However, the simplest practice is to add setter methods
on the Checkout class.

public class Checkout {

private OrderDispatcher orderDispatcher = new OrderDispatcherImpl();

private Invoicer invoicer = new InvoicerImpl();

public void setOrderDispatcher(OrderDispatcher orderDispatcher) {

this.orderDispatcher = orderDispatcher;

}

public void setInvoicer(Invoicer invoicer) {

this.invoicer = invoicer;

}

// ...

}

With these setters in place, the real implementations can be easily substi-
tuted for the mock implementations.

Testing Object Interactions with Mocks 47

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 47

The Mock class can generate a proxy that implements the required interface
being mocked by calling the proxy() method. This proxy is what the class
under test interacts with:

Checkout checkout = new Checkout();

checkout.setOrderDispatcher(((OOrrddeerrDDiissppaattcchheerr)) oorrddeerrDDiissppaattcchheerr..pprrooxxyy(()));

checkout.setInvoicer(((IInnvvooiicceerr)) iinnvvooiicceerr..pprrooxxyy(()));

Defining the Expectations

Now that we’ve handed these two mocks off to the Checkout object, we must
somehow provide a way to test Checkout’s interaction with them. We can do this
by providing expectations to the mocks. An expectation is a method call, includ-
ing arguments, which will be called on the mock instance. Looking at the
Checkout implementation, we can expect that Invoicer’s invoiceCustomer()
method is called.

An example of what this looks like is shown here:

invoicer.expect(“invoiceCustomer”, C.ANY_ARGS);

The expect() method tells the mock that it should expect that the
invoiceCustomer() method be called.

The C.ANY_ARGS argument is called an argument constraint. It says that
any arguments can be passed to invoiceCustomer(), and the expectation
will be met. The C class is a utility class with static methods provided by the
Mock Objects Library.

Understanding Argument Constraints

Just expecting that a method name is called is often not enough to test a class’
interaction with outside resources, such as Invoicer. To be more precise with
your expectations, constraints can be placed on the expectation as to which
arguments are allowed to be passed in.

Constraints are represented by the com.mockobjects.constaint.Constraint
interface. This interface has a single boolean eval(Object o)method that is
used to determine if a constraint is met or not. The Mock Objects framework
ships with several implementations for this interface, such as IsEqual, IsAny-
thing, IsInstanceOf, IsNot, and many more. You can use these prebuilt constraints
to narrow the precision of your expectation.

The expect() method allows for an array of constraints to be passed as an
argument, one constraint for each argument that will be verified in the
method. Since invoiceCustomer() has three arguments, a more precise
expectation might look like this:

48 Chapter 4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 48

iinnvvooiicceerr..eexxppeecctt((““iinnvvooiicceeCCuussttoommeerr””,, nneeww CCoonnssttrraaiinntt[[]] {{

nneeww IIssEEqquuaall((nneeww LLoonngg((112233)))),,

nneeww IIssEEqquuaall((““dduukkee@@iilloovveejjaavvaa..ccoomm””)),,

nneeww IIssEEqquuaall((nneeww FFllooaatt((110000..5500))))

}}));;

This expectation means that the invoiceCustomer() method is expected
to be called, but, furthermore, it is expected that the arguments will be equal to
123, “duke@ilovejava.com,” and 100.50.

A slightly more flexible expectation may look like:

iinnvvooiicceerr..eexxppeecctt((““iinnvvooiicceeCCuussttoommeerr””,, nneeww CCoonnssttrraaiinntt[[]] {{

nneeww IIssAAnnyytthhiinngg(()),,

nneeww IIssIInnssttaanncceeOOff((SSttrriinngg..ccllaassss)),,

nneeww IIssGGrreeaatteerrTThhaann((110000))

}}));;

Writing out these constraint arrays can be somewhat tedious. So, the C util-
ity class can be used to cut down the amount of code required. For example, an
expectation that only uses the IsEqual constraint can be shortened to:

iinnvvooiicceerr..eexxppeecctt((““iinnvvooiicceeCCuussttoommeerr””,,

CC..eeqq((nneeww IInntteeggeerr((112233)),, ““dduukkee@@iilloovveejjaavvaa..ccoomm””,, nneeww FFllooaatt((110000..5500))))));;

The C utility class contains several methods to help make creating
constraints easier for you. It provides an args() method that can be used to
construct Constraint[] arrays, which lets you avoid the cryptic new
Constraint[] {...} syntax.

It also provides many methods and public fields for using common
constraints, such as eq(), not(), IS_NULL, IS_NOT_NULL, and so on. Fur-
thermore, methods such as eq() and not() are designed to take both objects
as well as primitives, which allows you to avoid having to write code such as
new IsEqual(new Long(123)).

Verifying Expectations

Once expectations, including detailed constraints, have been specified, there
must be a way to verify that the expectations were indeed met. Fortunately,
this is very easy to do. Some of it happens automatically, such as a check
against constraints when the mock’s method is called. This means that, if your
code calls invoiceCustomer() with unexpected arguments, the unit test
will fail immediately.

However, there must be a way to see if invoiceCustomer() was ever
called at all. This is just a matter of simply calling the mock’s verify()
method, which will in turn verify that all the expectations were met correctly.
If the expectations aren’t met, the test will fail. A complete test looks like this:

Testing Object Interactions with Mocks 49

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 49

// create a Checkout to test

Checkout checkout = new Checkout();

// Create some mock dependencies

Mock orderDispatcher = new Mock(OrderDispatcher.class);

Mock invoicer = new Mock(Invoicer.class);

// Create some values to pass in

Customer customer = new CustomerImpl(123, “Duke”,

“duke@ilovejava.com”, “101 Java Dr., San Jose, CA 95126”, 100.50);

ShoppingCart cart = new ShoppingCartImpl(99.99, new long[] { 1, 2, 3 });

// Substitute the dependencies of the Checkout with the mocks

checkout.setOrderDispatcher((OrderDispatcher) orderDispatcher.proxy());

checkout.setInvoicer((Invoicer) invoicer.proxy());

// Setup expectations of how the Customer should interact with its

// dependencies

invoicer.expect(“invoiceCustomer”,

C.eq(new Integer(123), “duke@ilovejava.com”, new Float(100.50)));

orderDispatcher.expect(“dispatchItem”, C.args(

C.IS_ANYTHING, C.eq(“Duke”),

C.eq(“101 Java Dr., San Jose, CA 95126”));

// Execute the code under test

checkout.process(customer, cart);

//// VVeerriiffyy tthhee eexxppeeccttaattiioonnss wweerree mmeett

iinnvvooiicceerr..vveerriiffyy(());;

oorrddeerrDDiissppaattcchheerr..vveerriiffyy(());;

It is important to verify() the mocks at the end of the test; otherwise, there
would be no calls to verify yet.

Setting Up Return Values

Sometimes, just verifying that a method is called isn’t enough. In the last
example, we created a CustomerImpl object to represent our customer, Duke.
But, what if the customer object were too complex to create like that? We’d
have to mock it, which means that the mock now has to return values as well,
specifically for calls to getName(), getAddress(), getEmail(), and
getNumber(). Consider replacing the following code:

Customer customer = new CustomerImpl(123, “Duke”,

“duke@ilovejava.com”, “101 Java Dr., San Jose, CA 95126”, 100.50);

50 Chapter 4

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 50

Use the following code instead:

Mock customerMock = new Mock(Customer.class);

customerMock.matchAndReturn(“getName”, “Duke”);

customerMock.matchAndReturn(“getAddress”,

“101 Java Dr., San Jose, CA 95126”);

customerMock.matchAndReturn(“getEmail”, “duke@ilovejava.com”);

customerMock.matchAndReturn(“getNumber”, new Long(123));

Customer customer = (Customer) customerMock.proxy();

The matchAndReturn() method simply returns a preset value when the
named method is called.

While this change looks more complex, it actually gives us more power. We
can now write the Checkout unit test without CustomerImpl even being cre-
ated yet, a very powerful feature that we will explore more in Chapter 13 when
we discuss Test Driven Development. The unit test now truly runs in isolation!

NOTE Note that, in the last example, there were no constraints given to the
expectations. For methods that have no arguments, there is clearly no need to
provide any constraints. Therefore, the API has simpler versions of methods like
matchAndReturn() and expect() that take no constraints.

Summary

In this chapter, we looked at the complexity of testing large programs and the
difference between testing state and testing interaction. After seeing that it is
sometimes better to test interaction than state, we then looked at mock objects
as a way to do this. By using mock objects, we were able to test some advanced
code in isolation without requiring any external resources, such as a database.

Chapter 13 introduces a concept called Test Driven Development (TDD) that
will show how the fundamentals learned in this chapter, and Chapter 3 can be
used as a design and development process — not just for testing. From there,
we use Test Driven Development to create the rest of the PetSoar application
by using the tools and technologies that will be introduced in the remainder of
the book.

Testing Object Interactions with Mocks 51

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 51

07 463620 Ch04.qxd 10/28/03 8:49 AM Page 52

53

This chapter shows you how to simplify the persistence of objects by using
Hibernate. In the first part of the chapter, we explain Hibernate, persist a sim-
ple object model in a database, and query on it. In the second part, we exam-
ine the options Hibernate provides for handling complex relations between
objects and its support for persisting a hierarchy of classes. We introduce you
to some of the most popular tools for working with Hibernate and provide
a brief comparison between Hibernate and other competing persistence
technologies.

Understanding the Complexities of Persistence

One of the most complicated and time-consuming tasks of developing an enter-
prise application is writing the code to store and load data from a database at
the appropriate times.

At some point, the state of your application must be persisted — most likely
to a relational database. Following are some obstacles to overcome with this:

■■ Mapping an object model to a relational schema — The types of relation-
ships exhibited differ between the two types of models. For example,
relational databases model one-to-many and many-to-many relations;
whereas, object models model association, aggregation, composition,
multiplicity, and inheritance.

Storing Objects with Hibernate

C H A P T E R

5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 53

■■ Keeping your object model and database schema in sync — Why should you
have to? If you define a Person class with all its fields, you shouldn’t have
to duplicate your effort by defining the same structure in a table. What
happens when you change the class but you forget to change the schema?

■■ Persisting and retrieving an object from a database — Writing SQL for all
the fields is very tedious and error-prone. It is another thing that also
has to be updated when the model changes.

■■ Maintaining relationships — When an object is retrieved that is associ-
ated with a second object, where should the code go that retrieves this
second object? When should it be called?

■■ Querying data — Where do you write code to find all Person objects
who are born in a particular year?

■■ Performance — Executing an SQL hit for every single operation is slow
and puts a lot of overhead on the server. Techniques such as caching, lazy
loading, and eager loading must be employed to improve performance.

The actual work required to achieve all this is possible but very repetitive,
which adds to development time. However, like all repetitive tasks, tools can
be of assistance. Hibernate is one of those.

Persisting Objects with Hibernate 2

Hibernate version 2, which will be referred to from here on as Hibernate, is a
free and Open Source Object-Relational Mapping (ORM) framework available
from http://hibernate.sourceforge.net.

Hibernate is not an abstract, high-level persistence framework like JDO or EJB
CMP. Unlike those frameworks, it doesn’t try to abstract away completely to a
generic persistence framework that is applicable to mapping to relational, object-
based, or mainframe databases. It specializes only in transparent persistence of
objects in relational databases and, thereby, has an API that is more intuitive
for working with relational databases. Also note that, unlike those standards,
Hibernate is not currently an implementation of any industry standard.

Hibernate tries to accomplish what is known as Transparent Persistence in
its best and most realistic form. Transparent Persistence means that, in order to
add the persistence functionality to classes, you don’t have to modify the
classes to adapt to the persistence mechanism. Some frameworks, such as JDO,
use byte-code modification to accomplish this. So, in those systems, the com-
piled classes are enhanced by some persistence-specific bytecode. Hibernate,
on the other hand, does essentially the same thing but in runtime. The advan-
tage of this approach is smoother development cycles because no extra step is
added to the build process of the application to enhance the compiled classes
with persistence code.

54 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 54

Hibernate works with many different database brands, such as Oracle, DB2,
Sybase, PostgreSQL, and MySQL, to name a few. It understands different SQL
dialects of these databases and tries to take advantage of all optimizations pos-
sible in the SQL dialect of each of these databases. It’s worth mentioning that
Hibernate is independent of any application server and works on any of them. It
even works in environments other than J2EE application servers. For example,
you can easily use it in a client-server Swing application or in JUnit test cases.

Hibernate comes with a framework for storing objects in relational tables. It
provides an API to load those objects back in memory, either directly by using
the primary keys or by using a sophisticated query language called Hibernate
Query Language (HQL). It provides other services such as caching and database
schema generation, too.

Let’s start learning Hibernate with a very simple example. We will do normal
database operations such as inserting, updating, removing, and searching on a
simple object model that will be persisted into a HypersonicSQL database.
We’ve chosen the HypersonicSQL (HSQL) database for this sample because it’s
a pure Java database and can be very easily embedded into any Java applica-
tion with no setup required. The application itself won’t do anything useful. It
consists of some model classes and some code for testing them.

NOTE Although we use HypersonicSQL as the database in this chapter,
Hibernate can be used with most JDBC-enabled databases, including MySQL,
PostgreSQL, Oracle, and SQL Server.

Creating the Persistent Classes
The object model consists of two classes. The ContactInfo class has firstName
and lastName String properties, a phone property of type PhoneNumber, and
an ID field of type long, which will be mapped to the primary key of the table
it’s persisted to.

[ContactInfo.java]

package contacts;

public class ContactInfo {

private long id;

private String firstName;

private String lastName;

private PhoneNumber phone;

public long getId() {

return id;

}

Storing Objects with Hibernate 55

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 55

public void setId(long id) {

this.id = id;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public PhoneNumber getPhone() {

return phone;

}

public void setPhone(PhoneNumber phone) {

this.phone = phone;

}

}

The PhoneNumber class has countryCode, areaCode, and number
properties — all of type String. PhoneNumber does not have any ID proper-
ties. A PhoneNumber is dependent on a ContactInfo object and can’t exist
without a ContactInfo. ContactInfo has a reference to PhoneNumber.

[PhoneNumber.java]

package contacts;

public class PhoneNumber {

private String countryCode;

private String areaCode;

private String number;

public String getCountryCode() {

return countryCode;

}

public void setCountryCode(String countryCode) {

this.countryCode = countryCode;

}

public String getAreaCode() {

56 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 56

return areaCode;

}

public void setAreaCode(String areaCode) {

this.areaCode = areaCode;

}

public String getNumber() {

return number;

}

public void setNumber(String number) {

this.number = number;

}

}

Notice that the classes are plain old Java objects (POJOs). The only con-
straints set by Hibernate are that each class must have a public default con-
structor that takes no arguments, and each persistent field requires a getter
and setter method. Although, they don’t have to be public.

Mapping the Classes to a Database
With the classes in place, they can be mapped to a database schema.

The ContactInfo class is composed of some simple values and a PhoneNum-
ber class. This means that every PhoneNumber instance always belongs to a
single ContactInfo instance. In Hibernate-speak, the PhoneNumber class is a
component of ContactInfo.

This relationship means the two classes can be mapped to a single database
table:

TABLE CONTACTS

FNAME VARCHAR(30)

LNAME VARCHAR(50)

PHONEAREACODE VARCHAR(3)

PHONECOUNTRYCODE VARCHAR(5)

PHONENUMBER VARCHAR(15)

PK BIGINT not null

Hibernate needs to know how to map the classes to this schema. To do this,
a mapping file must be created.

A mapping is defined in a simple XML file named CLASS.hbm.xml, where
CLASS is the name of the class to be persisted. This file should reside in the
same directory or jar file as the compiled class.

[ContactInfo.hbm.xml]

<?xml version=”1.0”?>

<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD 2.0//EN”

Storing Objects with Hibernate 57

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 57

“http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd”>

<hibernate-mapping>

<class name=”contacts.ContactInfo” table=”CONTACT”>

<id name=”id” column=”PK”>

<generator class=”increment”/>

</id>

<property name=”firstName” column=”FNAME” length=”30”/>

<property name=”lastName” column=”LNAME” length=”50”

not-null=”true”/>

<component name=”phone”>

<property name=”areaCode” column=”PHONEAREACODE”

length=”3”/>

<property name=”countryCode” column=”PHONECOUNTRYCODE”

length=”5”/>

<property name=”number” column=”PHONENUMBER”

length=”15”/>

</component>

</class>

</hibernate-mapping>

<hibernate-mapping>

This is the root element of the mapping file. Inside this element, multiple
<class/> elements can be defined, but only a single <class/> is normally
defined. This describes the mapping for the class after the CLASS.hbm.xml
file is named.

<class>

The mappings for a class — and its components — are defined in the <class>
element. The name attribute is the fully qualified name of the class that the
mapping is being defined. The table attribute specifies the database table to
which this class maps. Hibernate currently supports mapping one class to one
table.

Inside the element are definitions for each of its fields.

58 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 58

<property>

The mapping for each of the primitive fields is defined by the <property>
element. Each primitive property of the class maps to a single field of the data-
base table. Name is the name of the Java property being mapped. It’s mapped
to a column defined by the column attribute.

We can also optionally define the length attribute to hint the length of the SQL
data type that Hibernate will use if creating a schema, such as VARCHAR(25).
Hibernate can do all the persistence operation without the length field being
present. This field is used only for generating the database schema from the
mapping file. The not-null attribute is also optional and only effective for the
schema-generation tool provided by Hibernate, which we will cover shortly.

By default, Hibernate guesses which getter or setter method of JDBC Result-
Set or PreparedStatement it should use. For example, if the property is of String
type ResultSet.getString(), it is used for loading the value from the
database. On the database side, the String field can be mapped to a database-
specific type, such as VARCHAR, TEXT, or any other vendor-specific type.
Hibernate maintains a default mapping between Java types and database types
for each brand of database. The mapping can be used for generating database
schema from mapping files. Of course, it is possible to redefine a mapping. For
example, we can map a specific String field to a CLOB type instead of the default
VARCHAR type. This is accomplished by nesting a column element inside the
<property> element.

<id>

Each persistent object should have a unique identifier. The identifier maps to
the primary key of the table to which the class is mapped. The nested <id>
element defines the mapping for the identifier property. Hibernate supports
IDs of primitive types, such as integer or long, and composite IDs. The <id>
element is used for defining primitive types as primary keys.

It is a good practice in database design to use primary keys that have no
business meaning and are auto-generated. Hibernate supports different ID
generation schemes, but you can add your own by implementing the
net.sf.hibernate.id.IdentifierGenerator interface. We use the built-in “incre-
ment” ID generation mechanism. Hibernate supports these ID generation
schemes:

■■ increment — Generates decimal numbers that are guaranteed to be
unique within a single JVM

■■ identity or sequence — Uses identity or native sequence columns of the
underlying database. Many databases support identity columns that are
auto-generated and filled by the database when a new record is inserted.

Storing Objects with Hibernate 59

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 59

■■ uuid.hex or uuid.string — Uses a UUID algorithm to generate identi-
fiers of type string that are unique within a network (the IP address is
used)

■■ hilo or seqhilo — Uses a hi/lo algorithm to efficiently generate identi-
fiers of type long. The biggest benefit of this algorithm is that it reserves
a chunk of IDs in one shot and assigns one to each new record from the
chunk. When all IDs from the chunk are consumed, a new chunk is
reserved. This technique leads to less database access for primary key
generation because IDs are assigned from the chunk that is in memory.

■■ assigned — Lets the application itself assign an identifier to the object.
It’s useful for rare cases when the ID should be calculated from the
properties of the domain object.

■■ foreign — Uses the identifier of another associated object

The choice of the ID generation mechanism is largely dependent on the
application requirements. If an ID unique to a single JVM is acceptable for a
particular application, it is the most efficient one. A database-dependent mech-
anism such as identity or sequence is mostly used in environments in which
many applications developed in different languages and environments work
with the database. In such an environment, the only universal mechanism that
all these applications can rely on is the ID generation provided by the under-
lying database.

<component>

This defines what Hibernate calls a component, which is a dependent class that
does not have a primary key of its own. Its life is dependent on the existence of
another object, and it is mapped to the same table of the wrapping class.

PhoneNumber is such a component type, and the phoneNumber property is
mapped to a <component> element. A PhoneNumber without a ContactInfo
object is meaningless.

Because of the nature of this relationship, it makes more sense to store both
the ContactInfo and PhoneNumber in a single CONTACT table with addi-
tional columns to facilitate the PhoneNumber.

The properties of the PhoneNumber component type are mapped to the
columns of the CONTACT table by the same <property> element we saw
before.

Configuring Hibernate
Before we can store and retrieve instances of ContactInfo to and from a rela-
tional database by using Hibernate’s API, we should first configure Hibernate.

Hibernate needs a minimum of these jar files in order to operate:

60 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 60

■■ hibernate2.jar — All the Hibernate interfaces and implementations
are in this jar file. While working with Hibernate, only classes from
Hibernate itself are used by the developer, and the rest of the following
jar files are used by Hibernate internally.

■■ Several Jakarta Commons components — commons-beanutils
.jar, commons-collections.jar, commons-digester.jar,
commons-lang.jar and commons-logging.jar. We’ll become
familiar with some of them in Chapter 11.

■■ cglib.jar — Hibernate uses this to enhance compiled classes in
runtime by persistence-specific code.

■■ odmg.jar — Hibernate provides an optional implementation of
ODMG’s API.

■■ xml-apis.jar and dom4j.jar — This is needed for working with
XML configuration files.

In our sample application, we will use the Open Source HSQL database,
which is downloadable free of charge from http://www.hsql.org/. To use
it, we must include hsql.jar in our application. We could, of course, use any
other supported database instead.

Now we should configure Hibernate to connect to the HSQL database and
also load and use the XML mapping files we created.

To configure Hibernate, we should create a file named hibernate
.cfg.xml. Hibernate expects to find this file from the classpath of the appli-
cation. Here is the hibernate.cfg.xml of our sample application, which
connects to an embedded HSQL database and lists the ContactInfo.hbm
.xml mapping file for the only persistable class of our application:

<?xml version=’1.0’ encoding=’utf-8’?>

<!DOCTYPE hibernate-configuration PUBLIC

“-//Hibernate/Hibernate Configuration DTD//EN”

“http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd”>

<hibernate-configuration>

<session-factory name=”/jndi/ContactsSessionFactory”>

<!-- properties -->

<property name=”hibernate.connection.driver_class”>

org.hsqldb.jdbcDriver

</property>

<property name=”hibernate.connection.url”>

jdbc:hsqldb:dbdata

</property>

<property name=”hibernate.connection.username”>sa</property>

Storing Objects with Hibernate 61

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 61

<property name=”hibernate.connection.password”></property>

<property name=”hibernate.dialect”>

net.sf.hibernate.dialect.HSQLDialect

</property>

<property name=”hibernate.connection.pool_size”>4</property>

<property name=”hibernate.show_sql”>true</property>

<!-- mapping files -->

<mapping resource=”contacts/ContactInfo.hbm.xml”/>

</session-factory>

</hibernate-configuration>

An XML file is adhering to the hibernate-configuration-2.0.dtd
file. The <hibernate-configuration> root element contains a single <session-
factory> element. This element defines how Hibernate should obtain a Session
for working with the database. It has a name that is actually the JNDI name the
database DataSource is bound to. If we were to run our application inside of a
J2EE application, we would define a DataSource in our favorite application
server and specify the JNDI name of the DataSource in the name attribute of
<session-factory>. We’ll run our sample application as a normal Java program
that has a main() method. In this case, this is just a symbolic name given to
the session factory used.

Two main elements under the <session-factory> element are <property>
and <mapping>.

We can define many properties for the session factory. In the case of a stand-
alone application such as this sample application, we should provide the JDBC
driver class name, connection string, user name, and password. The hiber-
nate.connection.driver_class, hibernate.connection.url, hibernate.connection
.username and hibernate.connection.password are specified for connecting to
the embedded HSQL database instance.

Hibernate also needs to know which dialect to use when talking to the data-
base because each database product is slightly different. Hibernate uses a
dialect to define the specifics of how best to store data and how to make opti-
mizations. For example, to store a String of 400 characters in MySQL, you
would use a column of type TEXT; whereas, in Oracle 9, you would use VAR-
CHAR2(400). The hibernate.dialect property refers to a class that configures
these optimizations. Hibernate is bundled with dialect classes for most rela-
tional database products. However, if one is missing, you can easily create
your own by adapting one of the existing ones.

Connection pooling is a very powerful technique for lowering the perfor-
mance overhead of opening and closing the database connection. The pool
holds a number of open connections all the time and serves them one-by-one

62 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 62

to the caller. When the client is done with the connection, it is returned to the
pool and is ready to be served to other callers. In case of a J2EE application, the
application server is responsible for handling connection pooling. Connec-
tions are then retrieved via the DataSource facility. For an environment outside
of a J2EE application server, we can use Hibernate’s built-in connection-
pooling mechanism. We use the built-in facility for this sample and configure
the number of pooled connections to four by using the hibernate.connection
.pool_size property.

Another useful property that we will use in this application is hibernate
.show_sql, which tells Hibernate to output any SQL statement it runs on the
console. This is very useful for learning which statements Hibernate eventu-
ally runs for persisting objects.

Next comes one or more <mapping> elements. All the XML mapping files of
the persistent classes should be listed here; otherwise, Hibernate can’t figure
out which classes are persistable and by which mapping file.

Obtaining a Session
Now that we have a hibernate.cfg.xml file, we should load it and let
Hibernate use it. This is accomplished by the following piece of code:

import net.sf.hibernate.HibernateException;

import net.sf.hibernate.cfg.Configuration;

...

Configuration config = new Configuration();

config.configure();

Hibernate comes with a flexible configuration API. Creating a Configura-
tion object and calling configure() on it to load the hibernate.cfg.xml
file. Some applications demand loading the configuration file from other
locations, such as somewhere on the disk or network. Hibernate provides
more advanced method for these cases.

Next, we should run Hibernate’s SchemaUpdate to generate the database
schema.

// update database schema if required

new SchemaUpdate(config).execute(true);

SchemaUpdate generates DDL statements and runs them to generate the
database schema. Because we’ve enabled the hibernate.show_sql property, we
see the statement being executed on the console:

create table CONTACTS (PK BIGINT not null, FNAME VARCHAR(30), LNAME

VARCHAR(50) not null, PHONE_COUNTRY_CODE VARCHAR(5), PHONE_AREA_CODE

VARCHAR(3), PHONE_NUMBER VARCHAR(4), primary key (PK))

Storing Objects with Hibernate 63

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 63

As you can see, the table and column names and their type and length are
extracted from the ContactInfo.hbm.xml mapping file. Note that Hiber-
nate mapped the ID of type long to BIGINT. This is the default mapping for
this type for HSQL.

We’re now ready to start persisting object with Hibernate’s API. We interact
with Hibernate via the net.sf.hibernate.Session interface. Session is the interface
that has low-level service methods such as load(), save(), and find().

Each session is backed by a java.sql.Connection instance. Session uses this
connection object to run SQL statements. On the other hand, Session is like a
transaction or a conversation with the underlying database. We call methods
such as save() and load(), but we should eventually finish our conversa-
tion and let Hibernate run all the operations that it recorded during the con-
versation. By using a single object to track this conversation, Hibernate can act
very smartly. For example, it can skip saving unmodified objects. It can also
cache loaded objects. So, if consecutive requests to load an object are received,
they are served from the cache instead of running any SQL statement. This is
known as the Unit of Work pattern.

Sessions are created by using the SessonFactory interface, which we config-
ured in the hibernate.cfg.xml file. The following code creates a Session-
Factory instance and obtains a Session from it:

import net.sf.hibernate.HibernateException;

import net.sf.hibernate.Session;

import net.sf.hibernate.SessionFactory;

...

SessionFactory result = config.buildSessionFactory();

Session session = sessionFactory.openSession();

SessionFactory is typically a singleton class. One instance is used for the entire
application in the particular JVM. It is created once and used thereafter for
creating Sessions. It’s thread safe so we can obtain Sessions from it without wor-
rying about concurrent threads. Session itself is not thread safe, and we should
be careful not to share it with other threads. In fact, we should get a Session, use
it, and close it when we are done with our conversation with the database.

The next sections show how to use the Session interface for performing
common persistence operations.

Storing Objects in the Database
Let’s first insert a ContactInfo instance into the database:

ContactInfo contact = new ContactInfo();

contact.setFirstName(“Bart”);

64 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 64

contact.setLastName(“Simpson”);

PhoneNumber phone = new PhoneNumber();

phone.setCountryCode(“999”);

phone.setAreaCode(“666”);

phone.setNumber(“6969”);

contact.setPhone(phone);

try {

session.save(obj);

session.flush();

session.connection().commit();

}

catch(Exception e) {

session.connection().rollback();

}

System.out.println(“contact:” + contact);

We create a ContactInfo object and save it by using the save() method
of the Session object that we’ve already obtained. Calling save() by itself
doesn’t make Hibernate run any SQL INSERT statement. We should finish our
conversation by calling the flush() and commit() methods. Also notice
that, if something goes wrong, Hibernate throws an Exception that we respond
to by catching and rolling back the operation by calling rollback() on the
underlying Connection object.

Let’s see what’s printed on the console as a result of running this code:

Hibernate: insert into CONTACTS (FNAME, LNAME, PHONE_COUNTRY_CODE,

PHONE_AREA_CODE, PHONE_NUMBER, PK) values (?, ?, ?, ?, ?, ?)

contact:contacts.ContactInfo@147358f[

id=69220892179431424,firstName=Bart,lastName=Simpson,

phone=contacts.PhoneNumber@190a0d6[

countryCode=999,areaCode=666,number=6969]]

Based on the ContactInfo.hbm.xmlmapping file, Hibernate generates the
SQL statement. Note the values of the properties of the ContactInfo object after
saving it in the database. Specifically notice that the “increment” ID-generation
mechanism that we chose to use generated a unique value for the ID property. A
record is added to the CONTACTS table with that primary key value.

The next thing we’ll do is modify this object and update the database
content with it:

contact.setLastName(“Williamson”);

contact.getPhone().setNumber(“7777”);

Storing Objects with Hibernate 65

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 65

try {

session.update(obj);

session.flush();

session.connection().commit();

}

catch(Exception e) {

session.connection().rollback();

}

The code is similar to the previous one except that, this time, we use the
update() method instead of save() to update an existing object. This is the
SQL statement that was run:

Hibernate: update CONTACTS set FNAME=?, LNAME=?, PHONE_COUNTRY_CODE=?,

PHONE_AREA_CODE=?, PHONE_NUMBER=? where PK=?

We can also use the saveOrUpdate() method instead of save() or
update(), and Hibernate will determine automatically which to call. The
saveOrUpdate() method looks at the value of the ID property to find that
out. To help Hibernate make the correct decision in this regard, we should give
it a hint about IDs for new objects and existing ones. This is accomplished by
adding an unsaved-value attribute to the mapping file of ContactInfo:

<id name=”id” column=”PK” unsaved-value=”0”>

<generator class=”increment”/>

</id>

If it’s a value other than the specified 0, Hibernate assumes it’s an existing
object. Calling saveOrUpdate() is not different from the previous codes:

try {

session.saveOrUpdate(obj);

session.flush();

session.connection().commit();

} catch(Exception e) {

session.connection().rollback();

}

Deleting an object from the database is equally easy. We just need to call the
delete() method:

try {

session.delete(obj);

session.flush();

session.connection().commit();

66 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 66

} catch (Exception e) {

session.connection().rollback();

}

It runs the following SQL:

Hibernate: delete from CONTACTS where PK=?

Retrieving Objects from the Database
We can either retrieve a specific object from the database by doing a “retrieval
by identifier” or by using the querying facility.

The first one is used when we know the primary key of the object we’re
looking for. To load an object by its identifier, we should use the load()
method:

try {

contact = (ContactInfo)session.load(ContactInfo.class,

new Long(69220892179431424));

session.flush();

session.connection().commit();

} catch (Exception e) {

e.printStackTrace();

session.connection().rollback();

} finally {

System.out.println(“loaded contact:” + contact);

}

The load() method accepts two parameters: the type of the object and
its ID.

Depending upon whether we’re running this code by using the same active
Session or in a new Session, we would see different responses on the console.
If we called load() on the Session instance that we used in the previous part,
we would see nothing on the console because it’s served from the cache of
objects attached to the Session that the Session keeps. Persistent objects are
always attached to an active Session; otherwise, they are transient until they
are reattached to a Session. Methods such as update() only reattach an object
to a Session. Later on flush(), the actual database operation takes place. Of
course, as expected, on a freshly opened Session, a SQL select statement is run
to load the object from the database because no such object with the specified
ID already exists in its cache of attached objects.

Storing Objects with Hibernate 67

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 67

Querying Persistent Objects
Now let’s load all objects of the ContactInfo type and print them on console. To
do so, we can use Hibernate Query Language (HQL). HQL is a simple language
similar to SQL designed for running object-based queries.

try {

List contacts = session.find(“FROM contacts.ContactInfo”);

session.flush();

session.connection().commit();

for (int i = 0; i < contacts.size(); i++) {

ContactInfo contactInfo = (ContactInfo) contacts.get(i);

System.out.println(“contactInfo:” + contactInfo);

}

} catch (Exception e) {

e.printStackTrace();

session.connection().rollback();

}

To execute an HQL statement, we use the find() method. What we give
the find() method to execute is an HQL statement that is considered an
“object query language.” As you can see, nowhere in the query is there
anything about the table or columns. Instead, object and properties are used.
So, a statement like FROM contacts.ContactInfo means select all objects of the
contacts.ContactInfo type. Under the covers, Hibernate translates this object
query to a SQL query like this:

Hibernate: select contacti0_.PK as PK, contacti0_.FNAME as FNAME,

contacti0_.LNAME as LNAME, contacti0_.PHONE_COUNTRY_CODE as PHONE_CO4_,

contacti0_.PHONE_AREA_CODE as PHONE_AR5_,

contacti0_.PHONE_NUMBER as PHONE_NU6_ from CONTACTS contacti0_

HQL has syntax very similar to SQL except that it uses classes and properties
instead of tables and columns. Instead of tables, we specify class names. Instead
of columns, we specify properties. Later in this chapter, you will learn how easy
it is to query on relations between tables or, more correctly, to query on associ-
ations between objects. It even supports sophisticated query functions such as
max(),avg(), and order by.

To query all ContactInfo objects that have a firstName value of Bart, we
should write the following code:

try {

String firstName = “Bart;”

List contacts = session.find(

“select c from contacts.ContactInfo c where c.firstName=?”,

68 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 68

firstName, Hibernate.STRING);

session.flush();

session.connection().commit();

for (int i = 0; i < contacts.size(); i++) {

ContactInfo contactInfo = (ContactInfo) contacts.get(i);

System.out.println(“contactInfo:” + contactInfo);

}

} catch (Exception e) {

e.printStackTrace();

session.connection().rollback();

}

Here we use the overloaded version of find() that accepts parameters and
parameter types, too. The select c from contacts.ContactInfo part tells Hiber-
nate the expected type of the found objects. The c is an alias name that we then
use in the where clause in the where c.firstName=? part. Hibernate substitutes
the ? sign by the parameter value that we pass in as the second argument. This
parameter’s type is specified by the third argument.

If more than one parameter is needed in a query, the third overload form of
find() can be used, which accepts an array of parameters and the corre-
sponding array of Hibernate parameter types.

Here are some more advanced queries:

from contacts.ContactInfo c order by c.firstName asc, c.lastName desc

This query shows the use of the order by clause. One or more properties can
be specified with their order type — ascending or descending.

select count(c) from contacts.ContactInfo c

This query returns a List containing a single Integer object that holds the
count of all contacts available in database. Note how something other than the
persistence class is returned as the result from the query.

select c.firstName, c.lastName from contacts.ContactInfo c

This query shows partial selects. Instead of the full object being loaded, we
can just load some specific properties of it. The returned result is a List of Lists.
The outer list contains one item for each match and the inner list contains the
items specified in the select clause — firstName and lastName.

The following returns a list of last names of all the contacts that have a
non-null lastName.

select c.lastName from contacts.ContactInfo c where c.lastName is not

null group by c.lastName

Storing Objects with Hibernate 69

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 69

The group by clause groups found items by lastName, exactly like SQL’s
GROUP BY clause. In fact, many of the HQL constructs are very similar to
SQL. Refer to HQL’s documentation for a complete list of supported con-
structs and their correct usage.

Persisting Relationships Between Objects
Let’s enhance the sample we’ve written. We want to be able to create logical
nested folders and put contacts inside of them. We also want to be able to mark
some folder protected and only let a specific user access it.

The easiest way to model such a requirement is to create a Folder class that
can have a list of the Folders below it and also a list of ContactInfos it contains.
Then, for the protected folders, the easiest way of modeling it is to derive a
ProtectedFolder class from Folder and store permission information in that
derived class.

The Folder class is shown as follows. It’s nothing but a simple Plain Old Java
Object (POJO). It has a List of Folder objects and a List of ContactInfo objects.
For both of these lists, we provide getter and setter methods plus add and
remove methods for adding and removing items.

package contacts;

import java.util.HashSet;

import java.util.Set;

public class Folder {

private long id;

private String folderName;

private Set folders = new HashSet();

private Set contacts = new HashSet();

public long getId() {

return id;

}

public void setId(long id) {

this.id=id;

}

public String getFolderName() {

return folderName;

}

public void setFolderName(String folderName) {

this.folderName=folderName;

}

public Set getFolders() {

return folders;

}

70 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 70

public void setFolders(Set folders) {

this.folders = folders;

}

public void addFolder(Folder folder) {

getFolders().add(folder);

}

public void removeFolder(Folder folder) {

getFolders().remove(folder);

}

public Set getContacts() {

return contacts;

}

public void setContacts(Set contacts) {

this.contacts = contacts;

}

public void addContact(ContactInfo contact) {

getContacts().add(contact);

}

public void removeContact(ContactInfo contact) {

getContacts().remove(contact);

}

}

We model the relationship between the parent folder and nested folders
with a unidirectional one-to-many relationship. A unidirectional one-to-many
relationship is a one-way relationship from the parent folder to the nested
folders. The Java code also shows the same type of association. Folder has a list
of nested folders. Another design would be a bidirectional one-to-many rela-
tionship. Not only would Folder contain a list of folders, but the nested folder
would also have a reference to its parent folder.

In the database world, the one-to-many relation is modeled by putting a for-
eign key in the table. In our case, the FOLDERS table has a PARENT
_FOLDER_PK column, which is a foreign key pointing to the row of the parent
folder. Of course, in the database world, all such relations are traversable from
both ends of the relations and, hence, bidirectional in nature. We can easily
query for the parent of a folder. Finding all children of a folder is equally easy.
It’s a select statement with a where PARENT_FOLDER_PK=? at the end. On
the Java side of it, modeling the association as bidirectional requires putting a
get/setParentFolder in the Folder class. Hibernate, of course, can handle both
cases.

The following database schema models the parent-child relationship
between folders:

FOLDERS

PK: BIGINT

FOLDER_NAME: VARCHAR(30)

PARENT_FOLDER_PK: BIGINT

Storing Objects with Hibernate 71

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 71

The relationship between contacts and folders is many-to-many. A folder
can have many contacts, and a contact can be a member of many folders. Such
a relation can’t be created in the database by putting a foreign key in the CON-
TACTS table like the relation between folders. Another table is needed where
each row represents a relation between one folder and one contact. This third
table is known as a join table. These are used for modeling many-to-many rela-
tionships in relational databases, and, as you can see, the relation between
folders and contacts is a many-to-many one. The schema for this join table is
like this:

CONTACTS_FOLDER_REL

PARENTFOLDER_PK: BIGINT not null

CONTACT_PK: BIGINT

Each row of this table holds the foreign keys of the respective folder and
contact records.

To map Folder to the preceding schema, the following Folder.hbm.xml
file is defined:

<hibernate-mapping>

<class name=”contacts.Folder” table=”FOLDERS”>

<id name=”id” column=”PK” type=”long” unsaved-value=”0”>

<generator class=”increment”/>

</id>

<property name=”folderName” column=”FOLDER_NAME” length=”30”/>

<set name=”folders”>

<key column=”PARENTFOLDER_PK”/>

<one-to-many class=”contacts.Folder”/>

</set>

<set name=”contacts” table=”CONTACTS_FOLDER_REL”>

<key column=”PARENTFOLDER_PK”/>

<many-to-many class=”contacts.ContactInfo”

column=”CONTACT_PK”/>

</set>

</class>

</hibernate-mapping>

Note the two <aet> elements. For the unidirectional one-to-many relation
between folders and for the many-to-many relation between folders and con-
tacts, a set can be used. Like the Java class, a set can contain any number of
items; however, the set’s order is not retained, and each item may only appear
once. The name attribute is the JavaBean name of the Sets. We have defined
set and get methods for each of the collections.

72 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 72

Hibernate supports different collection types. We can use java.util.List,
java.util.Set, arrays, and even java.util.Map collection types. All these types
can be mapped to database tables. Choosing the correct type of collection
needs some analysis of the requirement. A Set doesn’t allow duplicate items
and doesn’t keep track of their order. A List, on the other hand, is ordered and
allows duplicated items.

The nested <key> element and its column attribute specify which column is
used as the key for each item of the set on the table.

The type of the relation, whether it’s one-to-many or many-to-many, is
defined by putting a <one-to-many> or <many-to-many> element under the
<set> element. The class name of the other end of the relation is specified by
the class attribute. Java collections are not typed. They are just a collection of
java.lang.Objects. To let Hibernate know about the type of the other end of the
relation, we should provide the class name with the class attribute. By know-
ing the class name, Hibernate can create the correct class upon loading the
object from the database.

We defined everything the one-to-many folders relations needs. But, for the
many-to-many contacts relation, we should also specify the name of the join
table and the name of the foreign-key column pointing to a row in the CON-
TACTS table. To do that, we specify the table-name attribute for the <set> and
add a column attribute to <many-to-many>.

It’s time to write some code to create a folder, add some contacts and nested
folders to it, and finally save the whole graph of objects to the database:

Folder myFolder = new Folder();

myFolder.setFolderName(“My Folder”);

Folder friendsFolder = new Folder();

friendsFolder.setFolderName(“Friends”);

myFolder.addFolder(friendsFolder);

ContactInfo contact = new ContactInfo();

contact.setFirstName(“Bart”);

contact.setLastName(“Simpson”);

friendsFolder.addContact(contact);

try {

session.saveOrUpdate(folder);

session.flush();

session.connection().commit();

}

catch(Exception e) {

session.connection().rollback();

}

Storing Objects with Hibernate 73

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 73

We create a folder and add another friendsFolder to it. Then, a contact is cre-
ated and added to it, too. Finally, by using the same saveOrUpdate() meth-
ods that we used previously in this chapter, we save the root folder object.

Hibernate in some ways supports the concept of “persistence by reachability.”
So, if an object references another object and we save the first object, the second
object is also saved. Unfortunately, the current configuration doesn’t accomplish
this goal. If we run the application, only a single insert statement is issued, and
that statement inserts the root folder object to the database. We should instruct
Hibernate to cascade the save operation to referenced objects, too.

On any relation type, be it a <list>, a <set>, or a <one-to-one> relation, we
can add a cascade attribute and tell Hibernate what kind of cascading it should
do. There are some different cascade types:

■■ cascade=”save-update” — It tells Hibernate to save dependent objects
of an object, too.

■■ cascade=”delete” — When the parent object is deleted, all the depen-
dent objects of that object are also deleted from the database. It is useful
for modeling aggregations between objects. When the life of an object is
bound to the life of its parent, that object is aggregated by the parent.
Otherwise, it’s an association between them, and both can live indepen-
dently of each other.

■■ cascade=”all” — This is a combination of save-update and delete.

■■ cascade=”none” — This is the default that shows an association
between objects.

Because the folders list is an aggregation, when we save a folder, all folders
associated with it should also be saved. When we delete a parent folder, all
nested folders should also be deleted. The contacts list is an association
because a contact can be a member of many folders. So, when we delete one of
the parent folders, the associated contacts shouldn’t be deleted. Here is the
modified mapping file:

<set name=”folders” cascade=”all”>

<key column=”PARENTFOLDER_PK”/>

<one-to-many class=”contacts.Folder”/>

</set>

<set name=”contacts” cascade=”save-update” table=”CONTACTS_FOLDER_REL”>

<key column=”PARENTFOLDER_PK”/>

<many-to-many class=”contacts.ContactInfo”

column=”CONTACT_PK”/>

</set>

74 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 74

When we run the application, these statements are logged on the console:

Hibernate: insert into FOLDERS (FOLDER_NAME, PK) values (?, ?)

Hibernate: insert into CONTACTS (FNAME, LNAME, PHONE_COUNTRY_CODE,

PHONE_AREA_CODE, PHONE_NUMBER, PK) values

(?, ?, ?, ?, ?, ?)

Hibernate: update FOLDERS set PARENTFOLDER_PK=? where PK=?

Hibernate: insert into CONTACTS_FOLDER_REL (PARENFOLDERS_PK, CONTACT_PK)

values (?, ?)

As you can see, the operation is cascaded to the dependent objects.
Loading this object graph to memory is nothing but calling the infamous

load() or find() methods on a Session instance. The interesting part of the
retrieval of an object graph in memory is that, when the root object is fetched,
all referenced objects of that object are also fetched. The developer does not
have to issue separate requests for loading the referenced object.

Of course, it’s not always a good thing to load the entire referenced objects
in one shot. In fact, this will be a performance killer for this application! With
this approach, loading the root folder of the contact list will load all nested
folders and contacts, and those folders will, in turn, load their own nested
folders and contacts. This chain will lead to all the folders and contacts of the
database to memory. Sometimes, this is what we desire, especially when we
want to eagerly load all nodes of an object graph and cache it in memory. But,
in many cases, it’s not the desired behavior. That’s why Hibernate provides a
“lazy loading” scheme for referenced objects. So, if we mark a reference as
lazy, Hibernate won’t load the referenced object to memory when the parent
object is loaded. Hibernate sits there and waits until the getter method of the
reference is called. Only then does Hibernate try to load the referenced object.

So, to mark the two references, we add a lazy attribute to them:

<set name=”folders” cascade=”all” inverse=”true”

lazy=”true”>

<key column=”PARENTFOLDER_PK”/>

<one-to-many class=”contacts.Folder”/>

</set>

<set name=”contacts” cascade=”save-update” table=”CONTACTS_FOLDER_REL”

lazy=”true”>

<key column=”PARENTFOLDER_PK”/>

<many-to-many class=”contacts.ContactInfo”

column=”CONTACT_PK”/>

</set>

Storing Objects with Hibernate 75

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 75

It’s also worth mentioning how HQL queries can be applied to object refer-
ences. Suppose we want to find the count of contacts of a folder named
Friends. To do so, we write the following HQL query:

select count(elements(folder.contacts)) from contacts.Folder folder

where folder.folderName=?

We can access contacts of a folder with the folder.contacts expression. The
special elements() function is used for selecting the underlying elements of
a collection rather than the collection itself. Finally, the count() returns the
count of the selected elements. This sophisticated query converts into a single,
well-defined, and speedy SQL statement by Hibernate.

As another example, let’s select all folders that have a contact with a specific
firstName, such as Bart:

select folder from contacts.Folder folder join folder.contacts contact

where contact.firstName=?

Here again, we use the dotted notation to access referenced objects and their
properties. Here we retrieve all folders that have a contact with a specific
firstName. We use the join keyword just as in SQL.

Hibernate supports many sophisticated constructs in HQL. Refer to Hiber-
nate’s documentation for more details.

Persisting Hierarchies of Objects

No object-relational mapping discussion is complete without touching the
tough issue of mapping hierarchies of objects to database tables. Unlike object-
oriented languages, most relational databases do not have any notion of inher-
itance and class hierarchies. There are a different ways to map a hierarchy to
database tables. Here is a brief list of the most popular techniques:

■■ Table per concrete class — Each concrete class is mapped to its own table.
If some properties are common to many classes, they are defined in the
table of each concrete class, too.

■■ Table per class hierarchy — A single table holds all the properties of all
the classes in the hierarchy. The type of a row is held by using a “type
discriminator” column.

■■ Table per subclass — Each concrete class is stored in its own table.
Common properties are stored in a separate table, and the table of each
concrete type has a relation to the table holding common columns.

76 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 76

These types of mappings are possible in Hibernate. The first type does not
need any specific supporting code in Hibernate. In this mapping strategy, each
class maps to a table directly. The table-per-class-hierarchy mapping type
requires some built-in support in Hibernate. Otherwise, the developer would
need to write some low-level messy code to handle it. Fortunately, Hibernate
supports this mapping by what is known in Hibernate’s terminology as
“joined subclass.”

To demonstrate this, we will add a subclass of Folder, called OwnedFolder,
which contains an additional field that specifies the owner of the folder.

The table-per-class-hierarchy mapping strategy is attractive in this case
because Folder and OwnedFolder have many common properties with less
that differs.

With a single table for both Folder and OwnedFolder, a discriminator column
must also be added to the table to allow Hibernate to distinguish which class
should be loaded for a given row of the FOLDERS table.

When defining the class in the Hibernate mappings file, a discriminator
value is associated with both the base class and the subclass. The FOLDERS
table looks like this after this addition:

FOLDERS

PK: BIGINT not null

FOLDER_NAME: VARCHAR(30)

PARENT_FOLDER_PK: BIGINT

TYPE: VARCHAR(10)

OWNER: VARCHAR(30)

The OwnedFolder class is implemented like this:

package contacts;

public class OwnedFolder extends Folder {

private String owner;

public String getOwner() {

return owner;

}

public void setOwner(String owner) {

this.owner = owner;

}

}

We should change the Folder.hbm.xml mapping file and define
the owner property there. Add the TYPE column to the FOLDERS table as the
discriminator column:

<hibernate-mapping>

<class name=”contacts.Folder” table=”FOLDERS”

Storing Objects with Hibernate 77

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 77

discriminator-value=”Normal”>

...

<discriminator column=”TYPE” type=”string” />

<subclass name=”contacts.OwnedFolder”

discriminator-value=”Owned”>

<property name=”owner” type=”java.lang.String”

column=”OWNER” length=”30”/>

</subclass>

</class>

</hibernate-mapping>

The nested <subclass> element introduces the OwnedFolder subclass to
Hibernate. Subclasses of a base class are defined in the mapping file of the base
class as nested <subclass> elements. Note how owner is defined inside the
<subclass> element.

The discriminator column is defined by the <discriminator> element. It simply
defines the name and type of the column.

Finally, notice how the discriminator-value attribute is defined for both
Folder and OwnedFolder. The discriminator-value attribute of the <class>
element for the Folder class tells Hibernate that if the discriminator column
has a value of Normal, it’s a row representing a Folder in the database. The
<subclass> also defines the discriminator-value attribute — this time with a
value of Owned.

Other than the mapping file, we don’t need to change anything to load
members of a class hierarchy to memory or to save and query them. It follows
the same techniques that we defined in the previous parts of this chapter. Only
the querying part needs some explanation.

Hibernate queries are aware of class hierarchies. So an HQL statement such
as from contacts.Folder loads all Folder objects, including those that are
instances of OwnedFolder. This enables you to take advantage of inheritance
and polymorphism in your persistent objects. However, using a statement like
from contacts.OwnedFolder query loads OwnedFolder objects. Hibernate can
even handle querying over classes higher in the hierarchy. For example, from
java.lang.Object selects all objects available in the database! Under the covers,
Hibernate translates this abstract query to one or more queries that load all
instances derived from the specified type. This is a very powerful feature of
Hibernate’s HQL and a feature unavailable in SQL itself.

78 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 78

Understanding the Hibernate Toolset

Hibernate has a rich toolset for various tasks. A combination of Hibernate with
these tools makes Hibernate a very easy to use object-relational mapping
framework. We don’t give a detailed description or usage of these tools here.
Refer to the documentation of each of these tools for more details.

Hibernate comes with a set of built-in Ant tasks, such as SchemaExport and
SchemaUpdate. We’ve already seen SchemaUpdate in this chapter. There’s an
Ant task equivalent of it also provided. We can use the SchemaExport Ant task
to generate DDL files containing CREATE TABLE statements. Both of these
tasks are smart enough to be able to connect to existing databases and gener-
ate any ALTER TABLE statements necessary to upgrade a schema.

Apart from these built-in Ant tasks, Hibernate has very strong backing from
other third-party tools such as XDoclet.

XDoclet can be used for auto-generating Hibernate mapping files from
source code. Using this technique, we can greatly simplify the way we define
the object-relational mapping information. In Chapter 9, we will specifically
discuss this in more detail.

MiddleGen is another very useful tool that, in fact, sits on top of XDoclet and
generates the source code of persistent classes from the database table. So, if we
have an existing database schema, MiddleGen can generate the Java source
code for an object model based around this schema. MiddleGen is Open Source
and free and can be downloaded from http://middlegen.codehaus
.org/.

Comparing Hibernate with Competing Technologies

In this section, we will compare Hibernate with some of the most popular
competing technologies. It is intended as a brief comparison and is nowhere
near complete or extensive.

Hibernate vs. EJB
EJB provides a semi-transparent persistence mechanism with the Container
Managed Persistence (CMP) specification. The biggest differences between
Hibernate and CMP beans are:

■■ CMP is intrusive; whereas, Hibernate is non-intrusive. With Hibernate,
any POJO can be persisted without having to alter the design or imple-
ment interfaces specific to the persistence tool.

Storing Objects with Hibernate 79

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 79

■■ CMP beans are designed as coarser-grained components; whereas, Hiber-
nate leans toward fine-grained POJOs. When developing with CMP, you
tend to define big, coarse-grained CMP components. Modeling small
classes such as PhoneNumber is considered a bad practice in EJB.

■■ EJBQL, the object query language of EJB, is very limited. It doesn’t sup-
port inheritance and polymorphism as Hibernate does. It also doesn’t
support many features of HQL, such as its rich set of functions and
outer join and inner join facility.

■■ Testability of code is lost with EJB. You can’t test an EJB outside of its
container. On the other hand, you can easily run JUnit tests for Hiber-
nated classes by just running the normal JUnit test runner. In the case
of EJB, most people give up testing CMP beans because they have
to deploy the bean on the container every time they want to test
something and use a server side JUnit test runner such as Cactus.

■■ Hibernate can be run in non-J2EE environments. We can use Hibernate
in a classic two-tier architecture. We can pass persistent objects around
on the wire very easily. But serializing and transferring EJB beans is not
possible.

■■ The ejb-jar.xml file where the EJB beans are defined is amazingly
complicated in comparison with Hibernate’s human-readable mapping
files. Add to this complexity the mapping files of each EJB server ven-
dor. It’s considerably harder to manage even by using a tool such as
XDoclet or any IDE. One of the most complicated parts of EJB is, of
course, the container managed relations (CMR).

■■ In most containers (not all though!), performance is poorer than Hiber-
nate. This is because a CMP bean has layers other than just persistence,
such as security, transaction, and remote access calls. Normally, these
services are not needed for persistent objects. In a typical service-oriented
J2EE architecture, these services are provided by separate façade objects.

■■ Hibernate runs on any application server without the need for any
change to the code or the mapping files. To make CMP beans deploy
and run on a different application server, considerable effort is required.
Needless to say, different application servers support different sets of
persistence features, and the application is not guaranteed at all to work
on an application server that does not support a persistence feature
used by the application.

■■ Hibernate is not a standard; whereas, EJB is.

80 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 80

Hibernate vs. JDO
JDO is a relatively new transparent persistence standard, which is currently
supported by many former object database vendors and some object-relational
mapping vendors. JDO is very similar to Hibernate. Like Hibernate, but unlike
EJB, it works with POJOs.

The biggest difference between Hibernate and JDO is that JDO defines a
very abstract API for any persistence system. Theoretically, JDO can be used to
persist objects in nonrelational databases, such as object database, mainframe
databases, or even flat files. Hibernate, on the other hand, is only for relational
databases. This difference leads to different persistence APIs.

Another big difference is that JDO accomplishes transparent persistence via
bytecode enhancement. So, to make a POJO JDO persistable, a JDO enhancer
application should be run on the compiled classes. This tool adds JDO persis-
tence plumbing code to the bytecode of the POJOs. Hibernate, on the other
hand, performs the same operation in runtime; hence, easier and faster devel-
opment cycles occurs because there’s no need to run a tool each time a per-
sistable class is modified. Hibernate’s runtime approach has very little
performance overhead.

There are many smaller differences between these two technologies.
JDOQL, JDO’s query language, is considerably more limited than HQL. Also,
JDO leaves the definition of object-relational mappings to the vendors. This
leads to the same problem EJB has: Porting from one vendor to another takes a
lot of effort.

Hibernate vs. DAO Frameworks
Finally, the easiest way of handling the tough persistence problem is to code in
JDBC directly. The biggest problem with this approach is that hand-coded
statements aren’t as flexible as the vast set of options provided by smart object
relational mapping frameworks such as Hiberante. While with a simple
change of an attribute in the mapping file we can map and fine-tune the map-
ping of a POJO, accomplishing the same thing with raw JDBC and SQL
requires a considerable amount of coding — possibly by changing many SQL
statements in many different parts of the code.

Summary

In this chapter, you first learned about the complexities of persistence. You
then learned how to configure Hibernate and how to obtain a Session object for
working with the persistence framework. You learned how to use Hibernate

Storing Objects with Hibernate 81

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 81

to define the mapping for a simple object model. Then you performed various
common persistence operations on this sample object model, such as saving,
loading, and querying on it. You then learned how to persist relationships
between objects and how to map a hierarchy of classes to relational tables.
Finally, we discussed some useful tools for easier Hibernate development and
showed a brief comparison between Hibernate and some of its competing
technologies.

82 Chapter 5

08 463620 Ch05.qxd 10/28/03 8:49 AM Page 82

83

This chapter examines how we can build clean, simple, and maintainable Web-
based user interfaces. We introduce the Model View Controller (MVC) pattern
and show how it can be applied to the user interface of a Web application. We
will do this by using the Open Source framework called WebWork.

By using WebWork, we build a small user interface to introduce its impor-
tant features before looking in detail at how rich validation rules can be added
to the application. WebWork is built on an underlying project called XWork;
thus, we also discuss what XWork is and how it relates to Web-based applica-
tions. We discuss the Command Design Pattern — as made famous by the
Gang of Four — and show how XWork provides a framework based around
this pattern as well as several other powerful patterns that will make your
application development much smoother.

WebWork 2 is used throughout this book.

Understanding Model View Controller (MVC)

Model View Controller (MVC) was a technique devised in the late 1970s by the
SmallTalk community. It simplifies the development of user interfaces
by cleanly separating code into three layers: the model, the view, and the
controller.

Model View Controller
with WebWork

C H A P T E R

6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 83

When dynamic Web applications started to become mainstream in the mid-
1990s, most of the concepts that applied to traditional user interface (UI) devel-
opment temporarily went out the window as developers struggled to come to
grips with the new medium. Very quickly, Web-application development
became laborious and awkward. Over time, as comfort levels increased, the
original MVC concepts were revised to suit the Web application model.

There are many variations of MVC to suit different scenarios. Arguably, the
most practical for Web applications is Model 2.

Examining the Model Layer
The model layer represents the business domain. The model serves two
primary purposes:

■■ To expose data encapsulated by the application, such as listing products
in the inventory

■■ To allow business logic to be performed on the model, such as purchasing
a product

Depending on the programming paradigm used, typical implementations
of the model could be any of the following:

■■ Java objects

■■ Enterprise JavaBeans (EJB)

■■ Database-stored procedures

■■ Web services

■■ CORBA services

For clarity, we’ll use Java objects to build our model because these are the
simplest and most flexible.

Following are two important design features to bear in mind when devel-
oping the model:

■■ All interactions or data required by the system should be exposed via
the model.

■■ The model should not be aware of the user interface at all. Unless
directly applicable to the model, things like fonts, colors, layout, and
HTML should never be dealt with in the model. By keeping the model
nonvisual, we can reuse it from any type of user interface — whether it
be graphical, a Web page, a command line, or a Web service. This also
promotes a clean separation of roles. Business-logic developers need
not concern themselves with presentation and vice-versa.

84 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 84

Examining the View Layer
The view layer is responsible for taking data from the nonvisual model and
mapping to a visual presentation for the end user.

For Web-based J2EE applications, JSP is the most common view layer, and
we will be using it in this book.

Design considerations for the view include the following:

■■ The view should only read data from the model and display it to the
user. It should not handle user-input validation or make modifications
to the model.

■■ The view should never contain business logic but rather only presenta-
tion logic. For example, the model determines whether an account is
overdrawn, and the view determines how it should display accounts
if they are overdrawn.

Examining the Controller Layer
The controller layer responds to user input, manipulates the model, and deter-
mines which view to display next. The controller acts as the glue between the
model and the view.

In Model 2, a controller layer is split into actions. An action represents a task
the user wants to perform, such as submitting an application or clicking a link
for additional information. In Web applications, there is typically a direct cor-
relation between a browser making an HTTP request and an action being
invoked. The controller itself is a Servlet that manages the flow between
actions and views.

Tasks that can be performed by an action include the following:

■■ Validating incoming user input, such as options selected or values
entered in a form

■■ Mapping user inputs to business-logic methods exposed by the model,
such as setting the amount of money to be transferred from a form field

■■ Determining the correct view to display to the user next

■■ Providing the appropriate parts of the model to the view

Tying It All Together
When a request is made from a browser, the following interactions occur
between the model, view, and controller (see Figure 6.1):

1. A Web browser makes an HTTP request that is then dispatched to an
action.

Model View Controller with WebWork 85

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 85

2. Optionally, the action manipulates the model based on the user input.

3. The action forwards the request to the view with a reference to the
model.

4. The view pulls data from model via the action.

5. The resulting data is returned to the browser.

Looking at Reasons to Use MVC
While MVC can initially seem daunting, it can drastically simplify large or
complicated Web-based applications. Following are some reasons that you
may want to use MVC:

■■ Business logic can be developed in isolation from the user interface,
which allows problems to be neatly encapsulated and developers with
different specialties to work on the same system without stepping on
each others’ toes.

■■ With business logic encapsulated in the model, the model alone can
express the intentions of the system, which makes the system easier to
understand and maintain.

■■ Multiple interfaces can be built on top of the same model without having
to duplicate business rules. These could be different Web interfaces —
perhaps for advanced or administration users — desktop clients, PDAs,
phones, command-line interfaces, or Web services.

Figure 6.1 Flow of control through MVC

Browser Model

Controller

View

Client Server

1

5

2

4

3

86 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 86

■■ User interfaces are typically difficult to test. With the separation of lay-
ers, the model and controller have no presentational logic, which makes
them much easier to test. Views are relatively less error-prone than
these two other layers.

■■ Because the views contain only presentational logic — that is, little or no
code embedded — they can easily be maintained. A Web designer with
little or no programming knowledge can easily maintain the pages.

■■ UI developers can determine how best to develop user interfaces
without worrying about the details of business rules.

■■ The flow between Web pages can be easily altered.

■■ Because the model, view, and controller layers are decoupled, each
becomes easier to refactor, break down into components, and reuse.

■■ UI elements can be moved between pages easily.

■■ The Action classes make unit testing much easier.

Understanding MVC, WebWork, and XWork

As you can imagine, by using MVC in your application, you will most likely
end up with many views, models, and actions. There must be a way to easily
manage all these various parts to your application in a standard way. This is
where XWork and WebWork step in, two complementary modules for you to
use to rapidly develop clean, modular code that conforms to the MVC design
pattern.

Exploring XWork
XWork is a generic command framework that can be used for executing arbi-
trary units of work. This follows the command pattern very closely, which is
really nothing more than a single interface, com.opensymphony.xwork.Action
that all units of work must implement.

When each action is executed, a return code is given to the XWork frame-
work. This code is a simple String such as “success” or “error” that indicates to
the framework what the result of the action is. A result can be anything. In the
Web context, it is usually a JSP or HTML file.

Besides results and actions, XWork provides many other advanced features
such as an expression language, a validation framework, and support for inter-
ceptors. All of these advanced features will be discussed later in this chapter.

Model View Controller with WebWork 87

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 87

Exploring WebWork
While XWork provides the core framework for actions and results, WebWork
is a component on top of XWork that adds Web-specific features. Specifically,
WebWork provides three core features: dispatchers, Web-specific results, and a
library of tags to be used in the view layer.

A dispatcher is responsible for handing off incoming Web requests to the
appropriate actions. In Web applications, the most common way to invoke an
action is either via a Servlet or a Filter. WebWork comes with both. For exam-
ple, the ServletDispatcher, when mapped to the URL pattern *.action, will
allow you to execute the foo action when http://myserver/foo.action
is requested.

Once a dispatcher causes an action to be invoked, some sort of result must be
returned. XWork contains a rich framework for result types that WebWork uti-
lizes to provide several Web-specific results, such as support for Request-
Dispatchers and HTTP Redirects. Both are core parts of the Servlet specification.

Lastly, when each result is returned, usually a JSP or other view technology
is executed. Rather than have Web pages exposed to clunky XWork APIs, Web-
Work provides a large suite of built-in JSP tag libraries to assist with Web
development. Besides JSP support, there is tag support for other view tech-
nologies such as Velocity, XML, and JasperReports.

88 Chapter 6

XWORK’S MODULARITY

Because XWork acts as a small, command-pattern framework to be used by
other applications, it has been designed from the ground up to support
modularity. For example, its default configuration can be easily overridden and
embedded into existing configuration systems. The nice thing about using
XWork Actions is that they aren’t tied to the Web and can be reused very easily.
The following projects all support XWork actions, which means your code can
integrate with these projects without modification:

◆ WebWork — The most obvious integration is WebWork. WebWork, ver-
sion 1, was originally the command-pattern framework as well as the
Web features bundled into a single project. After seeing the power of
separating the two, XWork and WebWork 2.0 were born.

◆ JPublish — JPublish is an Open Source Web publishing and application
framework that cleanly separates developer roles. Versions 3.0 and be-
yond include support for XWork actions in addition to the JPublish API
from previous versions.

◆ OSWorkflow — Besides being a perfect fit for the request/response para-
digm, the command pattern also works very well for units of work in re-
lation to business workflow. OpenSymphony’s OSWorkflow module
supports XWork actions for executing whenever a business process takes
place, such as reviewing a document or updating an account.

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 88

Taking an In-depth Look at Actions

For now, we will not touch on dispatchers, results, or any of the advanced fea-
tures of XWork. Rather, we will dive right into a simple example of an XWork
action and explain what is happening. Then, we will discuss how to configure
XWork to use this action and show the bare basics involved for executing this
action in your Java application.

Model View Controller with WebWork 89

WHAT ABOUT STRUTS?

An alternative framework to WebWork is Jakarta Struts. Struts is a very popular
framework used widely in the Java world. Struts and WebWork both build upon
the same concepts of Model 2 MVC.

The advantages of Struts include the following:

◆ Mature product — This is one of the first MVC frameworks to make use of
Servlets and JSP.

◆ Huge community — There are many developers out there with Struts
skills to provide support or even work for you.

◆ Documentation — Many articles and books have been written on the
subject.

◆ Tool support — There are many tools available, such as IDE plugins, or
extension libraries designed to work with Struts.

The advantages of WebWork include the following:

◆ Simpler to learn — You’ll see how easy it is to get started in the next
section.

◆ Easy to extend for custom needs — The source code is minimal and has
been designed with customization in mind. If WebWork doesn’t behave
how you want it to, you can easily modify or extend it.

◆ Clean API — The interfaces used in WebWork are all very clean and
simple.

◆ Decoupled from the Web tier — It is easy to reuse actions in Swing appli-
cations, Applets, Web Services, EJBs, custom workflow engines, or unit
tests.

◆ Easy to test — Because of the simplicity of WebWork and how decoupled
it is from the Web tier, it suits the processes of Test Driven Development.

Both frameworks are powerful and can simplify your development greatly.
This book primarily focuses on WebWork; thus, going into the details of

Struts is beyond the scope of this book. For more information, see Mastering
Jakarta Struts, by James Goodwill (Indianapolis: Wiley Publishing, 2002).

Struts is available from http://jakarta.apache.org/struts/.

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 89

A Simple XWork Example
Following is the typical HelloWorld example that we all have grown to love.
But rather than saying hello to the world, we’re going to personalize this mes-
sage. To do this, the HelloWorld action will have one input: name. Likewise, it
will have one output: greeting. When this action executes, the greeting will be
constructed to be personalized for the name of our choosing.

TI P In XWork, inputs and ouputs are treated as JavaBean properties. As such,
Actions are really nothing more than a JavaBean or Plain Old Java Object
(POJO) that implements the Action interface.

All actions in XWork must implement the Action interface:

package com.opensymphony.xwork;

public interface Action {
public static final String SUCCESS = “success”;

public String execute();
}

Here is the simple HelloWorld action implementing this interface:

package helloworld;

import com.opensymphony.xwork.Action;

public class HelloWorld implements Action {

String name;

String greeting;

public void setName(String name) {

this.name = name;

}

public String getGreeting() {

return greeting;

}

public String execute() {

greeting = “Hello, “ + name;

return SUCCESS;

}

}

The only special thing to note is the return value of the execute() method.
As you can see, it is returning the String constant SUCCESS. This result value,
as well as others not shown here, is built into the Action interface for the sake

90 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 90

of simplicity. The most common return values are SUCCESS, INPUT, ERROR,
NONE, and LOGIN. As such, these are all built into the Action interface as
constants. If you need a different return code, you can just as easily return any
String value you please. Return codes are totally arbitrary.

Configuring XWork
Now that we’ve built an action, the next step is to configure XWork so that we
can use it. Because XWork is designed to be used in many different environ-
ments, such as the Web, workflows, or in your own application architecture,
the configuration is not specific to Web applications. As such, result mappings
for SUCCESS, like in our example, must be explicitly mapped to a result type.

For now, we won’t discuss results, interceptors, or other features in XWork.
These will be discussed later in this chapter. As we go over each topic, we will
revisit the configuration to show the new features. Following is the most bare-
bones configuration possible, in a file called xwork.xml:

<!DOCTYPE xwork PUBLIC “-//OpenSymphony Group//XWork 1.0//EN”

“http://www.opensymphony.com/xwork/xwork-1.0.dtd”>

<xwork>

<package name=”default”>

<action name=”hello”

class=”helloworld.HelloWorld”>

</action>

</package>

</xwork>

As you can see, the HelloWorld class has been mapped to an action named
hello. Furthermore, this action is included in the package default. Packages are
just simple ways to categorize actions. This is useful when your application is
very large, and you have hundreds of actions. Packages can extend other pack-
ages by inheriting their various attributes such as results and interceptors.

Lastly, packages can be bound to an — optional — namespace. By default, all
packages are in the empty namespace — that is, the empty string “”. Namespaces
are useful to avoid naming conflicts with your actions — just like packages do in
Java. Because we have only one action so far, we’ll use the default namespace.

Structuring Your Actions (Action Composition)
Before we actually run this action, let’s take a moment to look at a slightly
more complicated action that provides an even more personalized greeting. To
create the new greeting, the action requires three values: a last name, a city, and
whether the person being greeted is a male or female.

There are two ways we can approach this problem. The first and most obvious
way is to add new properties to the action, which ends up with three properties

Model View Controller with WebWork 91

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 91

total. This technique is considered “thin” because the object graph is very flat.
After all, there is only one object involved here:

public class ThinHello implements Action {

String name;

String city;

boolean gender;

String greeting;

public void setName(String Name) {

this.name = name;

}

public void setCity(String city) {

this.city = city;

}

public void setGender(boolean gender) {

this.gender = gender;

}

public String getGreeting() {

return greeting;

}

public String execute() {

greeting = “Hello “ + (gender ? “Mr. “ : “Ms. “) + name

+ “, say hello to my friends in “ + city;

return SUCCESS;

}

}

While this does indeed fill the job, it feels a bit odd and would probably make
most Object-Oriented Programming (OOP) gurus sick to their stomachs.
Because actions are really just simple Java objects, there is nothing holding us
back from decomposing ThinHello into a deeper, more object-oriented structure:

public class Person {

String name;

String city;

boolean gender;

// getters and setters for each property

}

public class DeepHello implements Action {

Person person;

String greeting;

public void setPerson(Person person) {

this.person = person;

92 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 92

}

public Person getPerson() {

return person;

}

public String getGreeting() {

return greeting;

}

public String execute() {

greeting = “Hello “ + (person.getGender() ? “Mr. “ : “Mrs. “)

+ person.getName()

+ “, say hello to my friends in “ + person.getCity();

return SUCCESS;

}

}

As you can see, this new design is much better in terms of object reuse and
general OOP practices. Even better, when we get to discussing XWork’s
Expression Language support, you’ll find that referencing these object graphs
is as trivial as a call to person.name. Thus, this promotes good design in all
your action and model code.

We generally call this type of action a model-driven action because it is actu-
ally reusing pieces of our model. The first action we saw can be referred to as
a field-driven action because the data is stored by fields within the action itself.

Calling an Action from XWork
Back to the simpler HelloWorld example, let’s write some code that finally causes
this action to be executed. In XWork, all actions are invoked via an ActionProxy,
a piece of code that manages the command execution lifecycle from start to fin-
ish. The following code will get a handle to an ActionProxy for the “hello” action,
execute it, and then print the return code as well as the greeting.

package helloworld;

import com.opensymphony.xwork.ActionProxyFactory;

import com.opensymphony.xwork.ActionProxy;

public class Main {

public static void main(String[] args) throws Exception {

ActionProxyFactory factory = ActionProxyFactory.getFactory();

ActionProxy proxy =

factory.createActionProxy(“”, “hello”, null);

System.out.println(proxy.execute());

HelloWorld hello = (HelloWorld) proxy.getAction();

System.out.println(hello.getGreeting());

}

}

Model View Controller with WebWork 93

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 93

To get a handle to an ActionProxy, we must use the ActionProxyFactory. By
using the createActionProxy() method, we pass in the namespace — “”
in this case — and the action name, hello. The third argument, which is
currently null, is for extra context values and will be discussed momentarily.
The output of this code is as follows:

success

Hello, null

This makes sense since our action is returning SUCCESS, and the name used
to construct the greeting was never set. But, clearly, we need to set the name
property somehow if we want this program to do anything remotely useful.

Using Parameters and the ActionContext
Now that we have the basic action executing, the next step is to somehow get
that name property set to a value of our choosing. In the previous example, we
said that the third argument of createActionProxy() was used for extra
context values.

In XWork, whenever an action is executing, there is a context in which it
runs called the ActionContext. XWork is based upon the single-thread model;
thus, its ActionContext is implemented as a java.lang.ThreadLocal, which is
introduced in Java 1.2. A ThreadLocal provides a simple mechanism for stor-
ing and retrieving objects from a central storage space while ensuring that
each storage space is only accessible from a single thread. This allows an object
to maintain states for multiple threads at the same time.

This means that code both internal to XWork and WebWork, as well as any
of your own code, may access context information about the action invocation
via a simple call to the ActionContext:

import com.opensymphony.xwork.ActionContext;

...

ActionContext ac = ActionContext.getContext();

Map params = ac.getParameters();

Because ActionContext is a ThreadLocal, the static call to getContext()
will return a different context for each thread, which means multiple actions
may be executing on different threads at the same time.

An ActionContext is really nothing more than a simple map containing all
the relevant information needed to execute an action as well as extra informa-
tion that might be important. One such piece of extra context information is a
map of parameters that can be treated as inputs to the action invocation.

Following is an example of how we can create these parameter mappings to
make the greeting more personable:

94 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 94

package helloworld;

import com.opensymphony.xwork.ActionProxyFactory;

import com.opensymphony.xwork.ActionProxy;

import com.opensymphony.xwork.ActionContext;

import java.util.HashMap;

import java.util.Map;

public class Main {

public static void main(String[] args) throws Exception {

Map params = new HashMap();

params.put(“name”, “Patrick”);

Map extraContext = new HashMap();

extraContext.put(ActionContext.PARAMETERS, params);

ActionProxyFactory factory = ActionProxyFactory.getFactory();

ActionProxy proxy =

factory.createActionProxy(“”, “hello”, extraContext);

System.out.println(proxy.execute());

HelloWorld hello = (HelloWorld) proxy.getAction();

System.out.println(hello.getGreeting());

}

}

As you can see, the name property was given a value of Patrick. The para-
meters map was then placed in another map called extraContext, which is then
placed in the ActionContext when a call to createActionProxy() is made.
The output is now:

success

Hello, Patrick

Great, this is much better. But what about the Web? So far, we haven’t seen
anything that really knocks our socks off. The real magic is when we apply this
generic command framework to the Web environment and get WebWork
involved. To do so, the most obvious thing would be having some sort of Web
page displayed when an action is finished executing, such as one that displays
the greeting message.

Applying Newton’s Third Law of Physics

As Newton’s Third Law of Physics says, “for every action there is an equal
opposite reaction.” We don’t want the exact opposite action to take place. That
is, negating the action’s side effects would render the process rather useless.
For every action, we’d like there to be some sort of reaction or, more precisely,

Model View Controller with WebWork 95

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 95

a result that illustrates what just took place. For example, if an action is called
UpdateAccountBalance, we might want the result of the action to display the
new account balance. In the case of HelloWorld, we’d like the result of
the action execution to be a Web page displaying the greeting.

Understanding XWork Results and Action Chaining
As already discussed, actions must return a String when they are finished exe-
cuting. XWork then uses this String to find a result type for that action in
xwork.xml. A result type is a class that implements com.opensymphony
.xwork.Result. By default, the only result class included with XWork is Action-
ChainResult. This is useful if you wish to have another action executed
immediately after your first action has executed. By chaining many actions
together, complex logic can be formed from simple building blocks.

All results take parameters in xwork.xml that are used to specify the behav-
ior of the result. An example of action chaining in xwork.xml is as follows:

<xwork>

<package name=”default”>

<result-types>

<result-type name=”chain”

class=”com.opensymphony.xwork.ActionChainResult”/>

</result-types>

<action name=”foo” class=”mypackage.FooAction”>

<result name=”success” type=”chain”>

<param name=”actionName”>bar</param>

</result>

</action>

<action name=”bar” class=”mypackage.BarAction”>

</action>

</xwork>

In this situation, after foo is finished executing, if the return value of its
execute() method is SUCCESS, the bar action will execute immediately
afterward. Chaining actions together can be very powerful, but the chain even-
tually has to end — whether a single action is being executed or a long chain
of many actions. Next, we will discuss results used specifically for the Web
environment.

Examining WebWork Results
and the Servlet Environment
WebWork provides several implementations of the Result interface to make
Web-based interaction with your actions very simple. The following results are
included with WebWork:

96 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 96

■■ ServletDispatcherResult — The Servlet specification provides for
javax.servlet.http.HttpServletRequest to support RequestDispatchers.
A RequestDispatcher allows an existing HTTP request to be used to
request alternative content on the Web-application server. Using this
feature, this result allows you to display JSP or HTML pages while the
URL of the original request is still in the browser location. This result
effectively forwards the request to the location specified.

■■ ServletRedirectResult — This is similar to the dispatcher result. Except,
rather than forwarding the request to the location specified, the
response is told to redirect the browser to that location. The conse-
quence of doing this means that a second HTTP request takes place;
thus, the action that was just executed is no longer available because
actions are built on the single-thread model. The advantage of this is
that the user’s browser is not actually pointing to the new location,
which means that clicking reload will not cause the action to be
executed again.

■■ VelocityResult — WebWork supports many view technologies. If your
view is a Velocity template, it’s possible to use the dispatcher or redirect
results to display the page. However, doing so involves more computa-
tion by the Servlet container than is necessary. Using the VelocityResult
will read the Velocity template immediately and render its output
directly to the HttpServletResponse’s output.

NOTE Velocity is a popular template engine used heavily by many WebWork
users as well as users of other alternative MVC frameworks such as Struts.
WebWork requires that Velocity be enabled and working because it is used
internally by the framework. However, it does not require that you use it for
your application’s views. You can find out more about Velocity at
http://jakarta.apache.org/velocity.

Other results are also included with WebWork, but these three are the most
frequently used ones. Result types are specified on a per-package level and are
inherited by subpackages. Following is an example xwork.xml file that
shows two different actions using the dispatcher and redirect results.

<xwork>

<package name=”default”>

<result-types>

<result-type name=”dispatcher”

class=”com.opensymphony.webwork.dispatcher.ServletDispatcherResult”/>

<result-type name=”redirect”

class=”com.opensymphony.webwork.dispatcher.ServletRedirectResult”/>

</result-types>

<action name=”hello1”

Model View Controller with WebWork 97

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 97

class=”helloworld.HelloWorld”>

<result name=”success” type=”dispatcher”>

helloworld.jsp

</result>

</action>

<action name=”hello2”

class=”helloworld.HelloWorld”>

<result name=”success” type=”redirect”>

helloworld.jsp

</result>

</action>

</package>

</xwork>

TI P XWork’s configuration allows you to specify the default result type for
each package. This is useful so that the most common result you are using,
such as dispatcher, does not need to be specified for every action result. Also,
each result supports a default parameter that can make specifying results even
simpler. We’re using the default abbreviated notation here. To use the full
notation, we have to specify the dispatcher result’s “location” parameter,
which means this result could read: <result name=”success”><param
name=”location”>helloworld.jsp</param></result>.

Because most results in a Web application have a single location parameter, the
abbreviated notation is generally preferred.

TI P Notice in the preceding xwork.xml example that HelloWorld is used for
two actions. This technique is called action aliasing and is very useful when
you want to use the same business logic with different results.

Configuring WebWork
WebWork must first be properly configured to use any of the WebWork fea-
tures we are about to discuss. Doing this is as simple as ensuring that both
xwork-1.0.jar and webwork-2.0.jar are in WEB-INF/lib and then
adding the following to web.xml:

<web-app>

<display-name>A WebWork Example</display-name>

<servlet>

<servlet-name>webwork</servlet-name>

<servlet-class>

com.opensymphony.webwork.dispatcher.ServletDispatcher

98 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 98

</servlet-class>

</servlet>

<servlet>

<servlet-name>velocity</servlet-name>

<servlet-class>

com.opensymphony.webwork.views.velocity.WebWorkVelocityServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>velocity</servlet-name>

<url-pattern>*.vm</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>webwork</servlet-name>

<url-pattern>*.action</url-pattern>

</servlet-mapping>

<taglib>

<taglib-uri>webwork</taglib-uri>

<taglib-location>/WEB-INF/lib/webwork.jar</taglib-location>

</taglib>

</web-app>

There are three things of importance here:

1. WebWork’s primary dispatcher is a Servlet. In this configuration, it has
been mapped to *.action, but this mapping is entirely up to you.
Some prefer *.jspa or *.do.

2. WebWork requires that Velocity be initialized correctly before it can be
used. Doing this is as simple as ensuring that the WebWorkVelocity-
Servlet has a load-on-startup parameter set. If you aren’t planning to
use Velocity at all, you can skip this.

3. Lastly, in order to use the JSP taglibs, you must specify them in
web.xml as shown.

Understanding the Role of the Dispatcher
Now that we know how to make the results of actions appear on the Web, the
next step is to somehow cause an action to be invoked from a Web browser.
The most obvious choice is to write a Servlet that executes the ActionProxy
code we previously looked at. The parameters of the HTTP request would be
added to the parameters map; thus, this makes inputs to actions from the Web

Model View Controller with WebWork 99

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 99

very easy. WebWork ships with such a Servlet, com.opensymphony.webwork
.dispatcher.ServletDispatcher.

ServletDispatcher must be mapped to a URL pattern such as *.action.
When a request for hello.action is made, for example, the dispatcher recog-
nizes that the hello action must be executed. Furthermore, all important
information that is unique to Servlets, such as the HttpServletRequest,
HttpServletResponse, and HttpSesssion, is placed into the ActionContext so
that it may be retrieved by either your code or by results that need that info
such as the ServletDispatcherResult.

This Web-specific information can be retrieved from the ActionContext by
using its get() method with the key being values stored in the WebWork-
Statics interface. Alternatively, WebWork provides a ServletActionContext that
has several static methods to do this for you.

import com.opensymphony.xwork.ActionContext;

import com.opensymphony.webwork.WebWorkStatics;

import com.opensymphony.webwork.ServletActionContext;

ActionContext.getContext().get(WebWorkStatics.HTTP_REQUEST);

// OR...

ServletActionContext.getRequest();

What all this means is that a request to http://myserver/hello
.action?name=Patrick would cause our HelloWorld action to be executed
with the property name set to a value of Patrick. If a parameter is part of the
request, but there is no associated property in the action, the parameter is
ignored. Likewise, if there is no parameter in the request for a property in the
action, the property is never set and stays as its original value. This is usually
null unless you specifically initialized it to something else.

Namespaces

As previously mentioned, namespaces are very important when there are
hundreds of actions to keep track of. In the world of the Web, namespaces are
commonly managed by using paths. ServletDispatcher will look at the entire
request path and use that to construct both the action name as well as the
namespace.

A request to /foo/bar.action means that the action named bar in the /foo
namespace will be searched for. If that action doesn’t exist, XWork will fall
back to the default namespace and try to find an action named bar there. If
neither can be found, an error will be reported by the ServletDispatcher:

There is no Action mapped for namespace /foo and action name bar

100 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 100

Exploring Example Views in JSP and Velocity
Now that we know how to invoke actions from the Web as well as have their
results render a JSP, HTML file, Velocity template, or just about anything else
that can be viewed in a Servlet container, the next step is to actually write some
simple pages that will be the views in our MVC application. Let’s build a sim-
ple page that displays the greeting by using JSP.

HelloWorld in JSP

Following is the JSP source for helloworld.jsp, as referenced in the
xwork.xml configuration shown previously.

<%@taglib uri=”webwork” prefix=”webwork”%>

<html>

<head>

<title>HelloWorld output</title>

</head>

<body>

The HelloWorld action greets you:

<webwork:property value=”greeting”/>

</body>

</html>

The only two parts of particular interest are the taglib reference, which is
required by all JSPs that want to use the WebWork JSP tags. The other part is,
of course, the webwork:property tag. This is how we can retrieve properties of
the action and display them in the Web page.

Some people find the performance of JSPs to be too slow. Others feel that
view layers shouldn’t be as powerful as JSP allows. Regardless of their rea-
sons, there are many people that choose to use Velocity templates instead. The
template for the same view in Velocity would be:

<html>

<head>

<title>HelloWorld output</title>

</head>

<body>

The HelloWorld action greets you:

$greeting

</body>

</html>

Model View Controller with WebWork 101

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 101

Now let’s try out this action and see if it works as expected. Pointing your
Web browser to http://myserver/hello1.action?name=Patrick,
you can see that the HTML generated is:

<html>

<head>

<title>HelloWorld output</title>

</head>

<body>

The HelloWorld action greets you:

Hello, Patrick

</body>

</html>

JSP Tags

We’ve already seen the property tag in action. Now, let’s look in depth at the
various JSP tags that WebWork comes with and see how they can be used to
make your views more dynamic. For a full tag reference, see the WebWork
Web site at http://www.opensymphony.com/webwork.

The Property Tag

As we already saw, the property tag can be used to print the value of a prop-
erty. This tag is, by far, the most commonly used tag when writing JSPs for
WebWork. Luckily, it is incredibly simple. Just fill the value attribute of the tag
with the expression you wish to display.

The Push Tag

WebWork is considered a hierarchical MVC framework because it supports a
stack-based system for values that your view layer might require. These values
are stored in the ValueStack, which will be discussed shortly. The push tag can be
used to push items on to the stack for more advanced data display in your JSPs:

<%-- this... --%>

<webwork:push value=”person”>

<webwork:property value=”name”/>

</webwork:push>

<%-- ... is the same as this ... --%>

<webwork:property value=”person.name”/>

The Set Tag

Sometimes it is important to be able to place references to objects or properties,
such as the greeting, in another location. In JSPs, it is common to place objects
in the page, request, session, or application scope. Using the set tag, it is possi-
ble to do this:

102 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 102

<webwork:set value=”greeting” name=”greeting” scope=”session”/>

<%= session.getAttribute(“greeting”) %>

Now the greeting has been saved to the user’s session and can be printed —
as we’ve done here — or used in other pages.

The If/ElseIf/Else Tags

Control flow in the view layer can be very important. WebWork provides three
JSP tags that can be used to specify view behavior under certain circumstances
only. Let’s recall the DeepHello action we previously looked at and now create
a view that displays the text in blue if the person is male and pink if the person
is female:

<%@taglib uri=”webwork” prefix=”webwork”%>

<html>

<head>

<title>DeepHello color output</title>

</head>

<body>

The DeepHello action greets you:

<webwork:if test=”person.gender == true”>

<webwork:property value=”greeting”/>

</webwork:if>

<webwork:else>

<webwork:property value=”greeting”/>

</webwork:else>

</body>

</html>

The Iterator Tag

The iterator tag is the second most frequently used tag in WebWork. At the
most simple level, it iterates over any “iteratable” object. Java has no concept
of an “iteratable” object. It is not an iterator, but it is rather any object with a list
of elements that can be traversed in a defined order.

Currently, WebWork can iterate over:

■■ Any collection, such as a List, Set, or Map

■■ Any class implementing java.util.Iterator or java.util.Enumeration

■■ Any array

The iterator tag does not distinguish among the different types of iteratable
objects. For whichever it is given, the tag will loop over each element in turn,
putting each in “context” during the body of the tag. Following is an example:

Model View Controller with WebWork 103

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 103

<webwork:iterator value=”people”>

<webwork:property value=”name”/>,

<webwork:property value=”city”/>

</webwork:iterator>

Suppose that an action had a java.util.List property called people. If the
view for that action is supposed to display the name and city of each person in
that list, the previous code fragment would do the job.

The Action Tag

Sometimes, using the ServletDispatcher to execute actions doesn’t suit our
needs. Suppose we want to point the browser directly to a JSP but still display
the greeting generated by HelloWorld. This can be done by using a JSP tag that
executes an action using the ActionProxy— just like ServletDispatcher does.
Parameters are pulled from the HTTP request or can also be programmatically
passed in:

<webwork:action id=”hi” name=”hello”>

<webwork:param name=”name” value=”’Patrick’”/>

</webwork:action>

<webwork:property value=”#hi.greeting”/>

Here, the action tag is told the name of the action it is going to execute — in
this case, hello — as well as the ID to store that action object in the Action-
Context — in this case, as hi. We give the action a parameter — just as we’ve
done in the past. But, this time, we use the webwork:param tag. Finally, when
the action tag closes, the action is executed, and values from that action can now
be retrieved. We can use the property tag to pull values from the ActionContext
by using the # operator. More information on this will come later.

Looking at Component-Based Web Development
Until now, the only way we’ve been providing input to our various “hello”
actions is either via the XWork API or an HTTP GET request. Of course, for real
Web applications, we require a nice UI for users to enter input. WebWork
provides a very rich set of components to assist with this.

Before we dive into code examples, let’s think about what a typical form
element must do. It must:

■■ Allow users to enter data

■■ Constrain the data to certain possible values, such as a drop-down
selection

■■ Display error messages if the entered data is considered invalid

■■ Display labels to describe the data being entered

■■ Make sure that the data entered is associated with the right property

104 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 104

In WebWork, there is a large set of tags for each type of HTML form element,
such as textfield, select box, radio, check box, and so on. Each of these tags
takes care of the stated requirements automatically for you, which allows you
to develop your JSPs in a very simple, componentized manner. So, rather than
coding hundreds of input textfields throughout your UI, you can now just
drop in textfield modules wherever you need.

TI P For error messages to be displayed when data is considered invalid,
XWork’s validation framework must be employed. Later in this chapter, we will
discuss validation and how it applies to the UI tags.

Let’s look at a simple input page for the DeepHello action:

<%@taglib uri=”webwork” prefix=”webwork”%>

<html>

<head>

<title>DeepHello Input</title>

</head>

<body>

The DeepHello action requires some info from you:

<webwork:form action=”deephello.action”>

<webwork:textfield label=”Name” name=”person.name”/>

<webwork:textfield label=”City” name=”person.city”/>

<webwork:textfield label=”Gender” name=”person.gender”/>

<webwork:submit value=”’Say Hello’” />

</webwork:form>

</body>

</html>

As you can see, this JSP is very simple and contains very little HTML.
Instead, it is comprised of callouts to tags that will, in turn, generate HTML
form elements for you. The generated HTML of such a page is as follows:

<%@taglib uri=”webwork” prefix=”webwork”%>

<html>

<head>

<title>DeepHello Input</title>

</head>

<body>

The DeepHello action requires some info from you:

<table>

<form action=”deephello.action”>

<tr>

<td align=”right” valign=”top”>

<label class=”label”>Name:</label>

</td>

<td>

<input type=”text” name=”person.name” value=””/>

Model View Controller with WebWork 105

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 105

</td>

</tr>

<tr>

<td align=”right” valign=”top”>

<label class=”label”>City:</label>

</td>

<td>

<input type=”text” name=”person.city” value=””/>

</td>

</tr>

<tr>

<td align=”right” valign=”top”>

<label class=”label”>Gender:</label>

</td>

<td>

<input type=”text” name=”person.gender”

value=””/>

</td>

</tr>

<tr>

<td colspan=”2”>

<div align=”right”>

<input type=”submit” value=”Say Hello”/>

</div>

</td>

</tr>

</form>

</table>

</body>

</html>

The JSP tags have now been expanded to HTML form elements with their
attributes specially populated with the pertinent information for the property
we are asking for input on. When the form is submitted, the values entered
will be passed off to the corresponding setter methods of the action.

Some of the form elements included with WebWork are:

■■ Text field

■■ Select box

■■ Text area

■■ Submit button

■■ Hidden value

■■ Password field

■■ Form element

106 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 106

There are a few more advanced tags as well, such as the doubleselect tag. You
can learn more about these tags by consulting the WebWork documentation at
http://www.opensymphony.com/webwork. Throughout this book and in
the PetSoar application, these tags will be heavily used so you can also see them
in action.

Themes

The default tags, while functional, are very bare bones. Often, we want to spice
up the UI a bit by using Cascading Style Sheets, colors, different fonts, and so
on. We need a way to theme the UI components specially tailored for our needs.
All the tags support an attribute or theme that allows you to specify the loca-
tion of the templates used to generate the various form elements. Each Veloc-
ity UI component is defined in a corresponding Velocity template file.

For example, if you want to create a new theme called “aqua,” create a direc-
tory called templates in the root of your Web application. In that directory,
create a subdirectory called aqua. There, you can place Velocity templates that
match the JSP tag names. So, if you wish to create a new look for the textfield
tag, write a textfield.vm template.

We recommend you consult the default templates as a starting point before
writing your own templates. They do a great job of reusing as much as possi-
ble, such as error reporting, labels, and positioning.

Once you’ve written your own complete theme, you can use that theme by
specifying the theme attribute in each JSP tag:

<%@taglib uri=”webwork” prefix=”webwork”%>

<html>

<head>

<title>DeepHello Input</title>

</head>

<body>

The DeepHello action requires some info from you:

<webwork:form action=”deephello.action”>

<webwork:textfield theme=”aqua” label=”Name”

name=”person.name”/>

<webwork:textfield theme=”aqua” label=”City”

name=”person.city”/>

<webwork:textfield theme=”aqua” label=”Gender”

name=”person.gender”/>

<webwork:submit theme=”aqua” value=”’Say Hello’” />

</webwork:form>

</body>

</html>

Of course, having to write theme=”aqua” for each UI component could soon
become quite a chore! As such, WebWork allows you to specify the default

Model View Controller with WebWork 107

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 107

theme for the JSP tags by creating a file called webwork.properties in
WEB-INF/classes and placing the following line in it:

webwork.ui.theme=/templates/aqua/

Now you can control the look and feel of your entire Web application with a
single configuration change.

Writing Your Own Component

Sometimes the default components work perfectly fine 99% of the time, but, in
rare situations, you need something unique. Writing an entire theme for 1% of
the time is rather painful. So, WebWork instead allows you to create custom
components to solve these unique situations.

Suppose that normally you want your textfields to be very basic — just as the
default ones are. But, in a couple pages in your application, you require a spe-
cial textfield with a popup JavaScript-based calendar to allow users to select a
date. You can solve this by creating the template, calendar.vm, and placing it in
/templates/xhtml, in which xhtml is the default template library. Then,
using the webwork:component tag, you can utilize this new template:

<webwork:component template=”calendar.vm” label=”Birthdate”

name=”birthday”/>

If your component requires special parameters that can’t be defined in the
webwork:component tag’s attributes, such as label or name, you can use
the webwork:param tag to pass in extra parameters:

<webwork:component template=”calendar.vm” label=”Birthdate”

name=”birthday”>

<webwork:param name=”showWeekends” value=”true”/>

</webwork:component>

By using themes and custom templates, you can begin to build a very rich
and modular library of UI elements that can be easily reused.

One Small Problem

One thing we’d like to point out is that our original example was slightly
flawed. To refresh your memory, it was:

<%@taglib uri=”webwork” prefix=”webwork”%>

<html>

<head>

<title>DeepHello Input</title>

</head>

<body>

108 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 108

The DeepHello action requires some info from you:

<webwork:form action=”deephello.action”>

<webwork:textfield label=”Name” name=”person.name”/>

<webwork:textfield label=”City” name=”person.city”/>

<webwork:textfield label=”Gender” name=”person.gender”/>

<webwork:submit value=”’Say Hello’” />

</webwork:form>

</body>

</html>

The problem is that the input for the male/female selection is currently a
textfield. That means the user must actually type “true” or “false.” A better
way to ask for the information would be in the form of a drop-down labeled
“Gender,” which allows the user to select either Male (true) or Female (false).
We can do this by replacing the textfield with the following:

<webwork:select label=”Gender” name=”person.gender”

list=”#{‘true’ : ‘Male’, ‘false’ : ‘Female’}”/>

Let’s break this down. The label is still Gender, and the name is still per-
son.gender, which maps to the Person object’s boolean property, gender. The
only new part is this list attribute. What exactly does all that stuff do? What
you are seeing is the first real taste of one of the most powerful features XWork
and WebWork offer: an expression language (EL). We will now discuss the EL
and explain why it is so powerful.

Expressing Yourself

As we just saw, there are times when we need to express some information,
such as the possible list of choices, that probably isn’t suitable to be repre-
sented in the domain model (person) or the action (DeepHello). Because a
selection of Male or Female could just as easily be Man or Woman, Boy or Girl,
or Guy or Gal, this clearly indicates this choice should be made at the view
level, which is typically a JSP or Velocity template.

Velocity has its own template language that we won’t discuss, but JSP has
no standard language for it — except for Java itself. The WebWork tags act as
an interface not only to the data that the action class exposes, but also to the
expression language that XWork natively supports.

In the previous examples, the value attribute of all the tags was considered
a parsed expression. That is, the content in the value attribute would be parsed
and then evaluated as an expression. XWork’s EL is built upon the Object Graph
Navigation Language (OGNL) available at http://www.ognl.org. It is an
expression language for getting and setting properties of Java objects. It also
has robust support for data-type conversion, collection manipulation, method
calling, and most other features that the full-blown Java language can do.

Model View Controller with WebWork 109

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 109

The OGNL Web site comes with a very nice set of documents; thus, we
won’t cover too many of the basics here. However, we will discuss the addi-
tional features that XWork provides on top of OGNL’s base language.

NOTE Recently, JSTL became the standard expression language for the JSP
specification. While WebWork does support JSTL at a basic level, OGNL is the EL
of choice for the JSP tag libraries because of the incredible power that OGNL
has over JSTL. OGNL is more than just an expression language. It provides a
framework that can be extended by many projects. Not only does XWork use
OGNL, but other projects have extended it as well, such as Jakarta’s Tapestry
project (http://tapestry.jakarta.org). With that said, JSTL and OGNL
have a very similar syntax, which makes moving between the two trivial.

Using Basic Expressions
We will now cover a few basic expressions in OGNL just to get your feet wet.
For more OGNL basics, check out the excellent documentation on the Web site.

Properties

As with most Java-based expression languages, OGNL is built upon the Jav-
aBean standard. This means that properties are represented in an object by get-
ter and setters methods. If the property is read-only, only a getXxx() method
exists. Likewise, if it is write-only, only a setXxx() method exists. And, of
course, read-write would include both. As the JavaBean standard indicates,
the type returned by the getter must be the same type of the argument in the
setter method.

public class Person {

String name;

String city;

boolean gender;

// getters and setters for each property

}

Looking at the Person class again, we can see that an expression of name
would call the getName() method; thus, this results in the name property of
the person we wish to evaluate upon. The same would work for the other
properties as well.

Now suppose Person has two new properties: father and mother of type
Person. If we were to find the mother’s maiden name, the expression would
now be mother.name. What this means is that if you wish to select a subprop-
erty, you can use dot notation — just as we do in Java with objects.

110 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 110

Method Calls

Now that we’ve discussed properties, method calls are not much different. The
only catch is that the entire method name must be given, and parentheses must
be used to distinguish a method call from a property name. That means that
method.name and mother.getName() will, in fact, evaluate to the same
value.

If you wish to call a method that takes arguments, that works exactly as you
might expect, mother.hasChildWith(father) would evaluate to true.
Using literals is also legal: father.olderThan(50). Using Strings in your
expressions is as easy as quoting them. However, some situations make it
impossible to use double quotation marks, such as when giving the expression
as a JSP tag attribute. So, using single quotation marks also works. All of the
following expressions are legal and do the same thing:

mother.setName(“Sharii”)

mother.name = “Sharii”

mother.setName(‘Sharii’)

mother.name = ‘Sharii’

Static Fields and Method Calls

Sometimes, calling static methods and accessing static fields is important. One
such scenario might be that you have some String constants in your action
class, and you want to display that value on a Web page. There are many other
situations where static access is important as well.

Normally, OGNL allows for static access by using the syntax @package
.ClassName@FIELD or @package.ClassName@method(args). However, this
can get pretty messy in your JSPs. So, XWork provides an easier way. Rather
than using the entire package and class name to specify a class, we can use the
shorthand “vs.”

This means that if we wish to display the HELLO public static field of our
HelloWorld example action, the JSP might contain:

<webwork:property value=”@vs@HELLO”/>

NOTE The reference to “vs” actually stands for ValueStack. We will discuss
what the ValueStack is later in this chapter.

Using Advanced Expressions
Now that we’ve gone over the simpler stuff, let’s look at more advanced things
you might want to do. While OGNL is very similar to the Java syntax, some

Model View Controller with WebWork 111

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 111

things are not included with Java and are borrowed from other languages, such
as C. We will now discuss some of the features of the EL that aren’t immediately
obvious to users familiar with other expression languages such as JSTL.

Dealing with Collections

The most common usage of the EL in WebWork is dealing with collections, such
as creating new Lists or Maps as well as selecting elements in them. Creating
Lists and Maps in OGNL is very simple. A List can be created by using the syn-
tax {e1, e2, ...} and a Map by using #{ k1 : v1, k2 : v2, ...}. As we saw previously,
a drop-down selection box for the gender of a person can be generated with:

<webwork:select label=”Gender” name=”person.gender”

list=”#{‘true’ : ‘Male’, ‘false’ : ‘Female’}”/>

The expression for the list attribute is essentially resulting in a Map being
created that maps the String “true” to the String “Male” and the String “false”
to the String “Female.” The individual elements in List construction — as well
as the key/value pairs in Map construction — can also be regular OGNL
expressions. This means that the following, while probably an unfair question
to ask, is perfectly valid syntax:

<webwork:select label=”Favorite Parent” name=”person.favoriteParent”

list=”{person.father.name, person.mother.name}”/>

Often, it is important to see if an element is in a collection. This, as well as its
opposite, can be done with the in and not in operations. Examples of this
are ‘foo’ in {‘foo’, ‘bar’} and ‘baz’ not in {‘foo’, ‘bar’}.

Lastly, you sometimes might want to select only a subset of a collection.
Doing this is called projection. Projection involves taking a larger collection and
selecting zero or more elements in the collection to result in a smaller collec-
tion. The general syntax is collection.{X selection}. Here, collection is the actual
list or map you plan to project upon. X indicates the type of projection you are
planning to do:

■■ ? — Select all the elements matching the selection logic.

■■ ^ — Select only the first element matching the selection logic.

■■ $ — Select only the last element matching the selection logic.

Finally, the selection part is called the selection logic and is the actual filter
that determines which elements should be included in the projection and
which should not. You can use the #this operator to perform logic queries on
the individual elements in the collection. For example, the following expres-
sion will select all male relatives from a person’s “relative” property, which is
a List: person.relatives.{? #this.gender == true}.

112 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 112

Constructors

Suppose you need a query that requires an object to be created. Just like in
Java, you can use the new operator in OGNL to create new objects. Following
is an example of an expression that checks, rather indirectly, if a person’s
father’s name is James from San Jose:

person.father.equals(new Person(“James”, “San Jose”, true))

Context Variables and the Root Variable

The last thing to discuss, as it is pertinent to our next topic, is OGNL’s notion
of context variables and the root variable. The way OGNL works is that there is
always a context, which is essentially a Map that contains a mapping of
variable names to variable objects.

You can refer to an object in the context with the # operator. This means, if
the context contains two variables, foo and bar, you can refer to them as #foo
and #bar, respectively. However, having to prefix each and every expression
would get tedious. So, the concept of a root, or default, variable was intro-
duced. What this means is that, if foo and bar are both in the context map and
foo is also the root variable, #foo.baz and baz are actually the same expression.

It turns out that the ActionContext in XWork, which is a map, is, in fact, the
same OGNL context. This means that anything in the ActionContext can be
referenced by using this operator. As we showed before, the action JSP tag can
be used as:

<webwork:action id=”hi” name=”hello”>

<webwork:param name=”name” value=”’Patrick’”/>

</webwork:action>

<webwork:property value=”#hi.greeting”/>

Because the ID was “hi,” the action object itself was then mapped to the “hi”
variable name in the OGNL context (ActionContext), and thus the expression
#hi.greeting now makes perfect sense.

Understanding the ValueStack
As we just discussed, OGNL normally supports a single root object and any num-
ber of named context variables. However, WebWork is slightly different in that,
rather than a single root object, there is a single root stack called the value stack.

This means that, rather than only one object in the root context, any number
of objects can all be considered to be in the root context. The best way to see
this is to look at a few examples. Suppose that the stack contains two items: foo
and bar. Also, the context contains a third item, baz. The context can then be
visualized as shown in Figure 6.2.

Model View Controller with WebWork 113

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 113

Figure 6.2 Stack context

A query such as #baz.bazName would access the bazName property of the
bazObj — as we’ve already seen. The tricky part is when we issue a query such
as fooName or barName. In the case of fooName, when fooName is a property
of fooObj but not barObj, the stack would be traversed from the top down until
a match was found. In this case, a match would be found at the top of the stack.

In the second case, barName, fooObj would first be looked at, but, because it
has no barName property, the next object on the stack, barObj, would be evalu-
ated. Lastly, if a property, such as bazName or noName, is accessed on the root
object and all elements in the stack have been exhausted, null will be returned.

Accessing Stack Elements

Under some circumstances, it is important to be able to skip some elements on
the stack when traversal begins for a property or method name. For example,
suppose the stack contained two Person objects. If your query was just name,
the name of the person on the top of the stack would be returned. To get the
name of the person lower in the stack, the query would be [1].name.

Accessing items other than the top of the stack is as simple as using array
notation, where the index is the location of an item in the stack, with zero being
the top of the stack.

Examples Using the JSP Tags

The application of the value stack may be hard to see until you’ve seen it in
action. We can do this by showing a few JSP examples that take advantage of
the behavior of the unique features that the value stack offers.

<webwork:iterator value=”relatives”>

<webwork:property value=”[1].name”/> -> <webwork:property

value=”name”/>

</webwork:iterator>

Here, we are iterating over the List of relatives on the Person object. For each
iteration over the relatives List, the current relative will be pushed onto the
stack. That means that, inside of the iterator block, a query of name would
return the relative’s name — not the name of the person who has these rela-
tives. To query that name, we have to use [1].name instead. The output of that
JSP snippet might look like:

baz

bazObj

root

VS

barObj
fooObj

114 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 114

Pat -> Shari

Pat -> James

Pat -> Chris

Another JSP tag that illustrates the features of the value stack is the push tag.
This tag allows you to push items onto the stack, which makes queries simpler.
The following two JSP blocks produce the same output, but, as you can see,
one is much easier to read.

<webwork:property value=”person.mother.name”/>

<webwork:property value=”person.mother.age”/>

<webwork:property value=”person.mother.hairColor”/>

<webwork:property value=”person.mother.favoriteColor”/>

<webwork:push value=”person.mother”>

<webwork:property value=”name”/>

<webwork:property value=”age”/>

<webwork:property value=”hairColor”/>

<webwork:property value=”favoriteColor”/>

</webwork:push>

Exploring Type Conversion

One thing that has always been a bit of a pain with Java-based Web develop-
ment is its support — or lack of it — for typing. In languages such as Perl and
PHP, where types aren’t strongly enforced as in Java, dealing with the typeless
nature of the Web is very easy.

The HTTP spec does not allow types to be defined for GET or POST para-
meters. This means that Java code must do the type conversion for you. For
Servlets, all parameters come in as either String or String[], which means that
it is usually up to your code to convert these to the actual type.

Fortunately, XWork provides a very strong type-conversion system to allow
you to reuse type-conversion logic throughout your application. While it
might be perfectly legal to make all your actions’ properties String and then
convert them in the execute() method, this is cumbersome and makes you
focus on things other than business logic.

A better way is to make your actions and classes use the types you’d want
them to use and then provide XWork with some information on how it should
handle converting from type X to type Y or vice-versa. Let’s look at some
examples to see this in action.

Digging into a Date Example
One of the more common things we’d like to read as well as display in a Web
system is a date. Suppose we want our application to be hardcoded on the

Model View Controller with WebWork 115

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 115

format MM/dd/yyyy. We want to specify conversion both to and from String.
To do so, all we’d need to do is implement the TypeConverter interface or
extend DefaultTypeConverter, which does much of the work for you.

NOTE As we all know, the MM/dd/yyyy format is a U.S. thing, and other
countries use different formats to express a date. While XWork does have broad
support for i18n, we won’t be discussing it in this chapter because it is a huge
subject. If you’d like to find out more about XWork and WebWork’s supports for
i18n, check the OpenSymphony Web site for documentation.

package myfirstconverter;

import ognl.DefaultTypeConverter;

import java.util.Map;

import java.util.Date;

import java.text.SimpleDateFormat;

import java.text.ParseException;

public class DateConverter extends DefaultTypeConverter {

public Object convertValue(Map context, Object obj, Class type) {

SimpleDateFormat sdf = new SimpleDateFormat(“MM/dd/yyyy”);

if (type == String.class) {

Date date = (Date) obj;

return sdf.format(date);

} else if (type == Date.class) {

String date = (String) obj;

try {

return sdf.parse(date);

} catch (ParseException e) {

return null;

}

}

return null;

}

}

As you can see here, the DateConverter class is actually very simple. If we
are being requested to convert to a String, we use the format() method of
SimpleDateFormat. If we are being requested to a Date, we use the parse()
method. By using a type converter such as this, we can allow our action classes
and models to keep their original types and still handle the loose typing prob-
lem that the Web environment creates.

116 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 116

Specifying Default Conversion Rules
Now that we know how to create type converters, the next task is to make sure
XWork actually uses them. There are two ways to do this. The first way is to
define a default rule such that this type converter is used, anytime a particular
type, such as java.util.Date, is encountered.

Default rules can be specified in the xwork-conversion.properties
file, located in WEB-INF/classes. The format of this file is:

full.name.of.Type=full.name.of.TypeConverter

If we want our DateConverter to be applied to all dates in our application,
we just add the following entry:

java.util.Date= myfirstconverter.DateConverter

NOTE XWork ships with a large set of default converters that are built to
handle most of the common types you encounter, such as Date, String, List,
Map, all the primitives, arrays, and others. These default types are stored in
xwork-conversion.properties that are bundled in the XWork jar file.

Specifying New Conversion Rules
Sometimes, we don’t want to use the default conversion rules but rather a
more granular manner. XWork allows you to specify type converters on a per-
class, per-property basis as well. This means that you might want to use the
DateConverter by default, but, for some classes, you want to use a DateAnd-
TimeConverter instead.

To do this, you must create a file of ClassName-conversion.properties
in the same package as the class you want to define the rule upon, where Class-
Name is the name of your class. In this file, you then map properties of the class
to type converter classes.

For example, if we want to allow a way to input a Person as String such as
Patrick, San Francisco, true, we could create a type converter to break this
string up and create a Person object. To make sure that this type converter is
used only for the DeepHello action class, we create a file called DeepHello-
conversion.properties with the following content:

person= myfirstconverter.PersonConverter

Model View Controller with WebWork 117

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 117

Separating Concerns with Interceptors

Aspect-Oriented Programming (AOP) is considered the next step in the evolu-
tion of software development. While AOP is only just becoming mainstream,
there are concepts it uses that have actually been around for quite a while.
AOP has interceptors that can be wrapped around method calls, field reads
and writes, and many other things.

XWork borrows from the ideas in AOP as well as those presented long ago
by design pattern experts. It provides for the ability to configure interceptors
around calls to the execute() method of your action. These interceptors can
do things before and after the execute() method is called, including short-
circuiting calls to execute() entirely.

Looking at Configuration and Interceptor Stacks
Interceptors within XWork are configured in stacks, which can be applied to
any action or package of actions. A stack of interceptors is applied in the order
they are defined. Let’s first look at how to define interceptors. We’ll then look
at how to apply interceptors to actions and packages.

<interceptors>

<interceptor name=”timer”

class=”com.opensymphony.xwork.interceptor.TimerInterceptor”/>

<interceptor name=”logger”

class=”com.opensymphony.xwork.interceptor.LoggingInterceptor”/>

<interceptor name=”params”

class=”com.opensymphony.xwork.interceptor.ParametersInterceptor”/>

<interceptor name=”component”

class=”com.opensymphony.xwork.interceptor.component.ComponentInterceptor

”/>

<interceptor name=”validator”

class=”com.opensymphony.xwork.validator.ValidationInterceptor”/>

<interceptor-stack name=”defaultStack”>

<interceptor-ref name=”timer”/>

<interceptor-ref name=”logger”/>

<interceptor-ref name=”params”/>

<interceptor-ref name=”component”/>

</interceptor-stack>

<interceptor-stack name=”validatingStack”>

<interceptor-ref name=”defaultStack”/>

<interceptor-ref name=”validator”/>

</interceptor-stack>

</interceptors>

118 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 118

Here, you can see we define five interceptors and two stacks. The second
stack is actually an extension of the first stack, but it adds an extra interceptor
after the original four — validator. This is good when you want to apply only
some interceptors to certain actions and other interceptors to other actions.

Now let’s look at how we can apply these interceptors to our familiar Hello-
World action:

<action name=”hello1”

class=”helloworld.HelloWorld”>

<interceptor-ref name=”defaultStack”/>

<result name=”success” type=”dispatcher”>

<param name=”location”>helloworld.jsp</param>

</result>

</action>

Sometimes, we don’t want to specify the interceptor-ref for every action, but
rather for an entire package, and all actions in that package will use that
default interceptor-ref:

<package name=”default”>

...

<default-interceptor-ref name=”defaultStack”/>

<action name=”hello1”

class=”helloworld.HelloWorld”>

<result name=”success” type=”dispatcher”>

<param name=”location”>helloworld.jsp</param>

</result>

</action>

</package>

Using default-interceptor-ref is good because you can use the defaultStack
without having to explicitly reference it. Then, in situations where you don’t want
to use defaultStack, but rather validatingStack, you can override the default.

Using LoggingInterceptor
Interceptors can do many different things, but they conceptually all work the
same way. To understand the flow of execution, the simplest interceptor to
look at is the LoggingInterceptor. Suppose we had the following action that
was configured to use the LoggingInterceptor:

public class PingPong implements Action {

public String execute() {

System.out.println(“Ping... Pong!”);

return STRING;

}

}

Model View Controller with WebWork 119

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 119

When this action gets called, the output to the console would be:

Starting execution stack for action pingpong

Ping... Pong!

Finishing execution stack for action pingpong

As you can see, the LoggingInterceptor merely prints statements before and
after the call to execute().

Building Your Own Interceptor
Using the simple power of interceptors, you can now begin to write interceptors
to handle security or transactions or anything else you can dream up. For exam-
ple, a security interceptor might be configured to allow only the execute() call
to pass through if a user had already been authenticated. A transaction intercep-
tor might start a transaction before the call to execute() and then, after the
call, either commit or rollback. The possibilities are truly limitless.

Validation — A Powerful Interceptor

One area of Web-application development we haven’t looked at is validation.
You should always validate any data received from end users, and a Web
application is no different. Let’s look briefly at how validation could be done
by hand and then at the XWork validation framework, which makes validation
easier by decoupling the validation rules for an action from the action itself.

Exploring an Example without
XWork Validation Framework
Let’s look at how we might add our own validation to the HelloWorld exam-
ple. At the moment, there is no validation at all. So, what should we validate?
Well, in this case, it’s very simple.

120 Chapter 6

INVERSION OF CONTROL

As usual, there’s more than one way to do things. We mentioned that
interceptors can be used to handle transactions. Built upon XWork’s interceptor
support, XWork also contains an Inversion of Control (IoC) framework that can
be used to handle things such as transaction management as well. But rather
than making a TransactionInterceptor, XWork’s IoC framework allows you to
write a transaction service that has init() and dispose() methods called
before and after the execute() call that is courtesy of the interceptor. Chapter
14 discusses IoC in much more detail.

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 120

There is only one field (name) and we should validate that the user entered
a correct value for it. This means the name String must be not null and must
have at least one character in it.

Let’s look at some code to see how we would do this:

import com.opensymphony.xwork.ActionSupport;

public class HelloWorld extends ActionSupport {

String name;

String greeting;

public void setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

public String getGreeting() {

return greeting;

}

public String execute() {

if (name == null || “”.equals(“name”)) {

addFieldError(“name”, “You must specify a valid name.”);

return ERROR;

}

greeting = “Hello, “ + name;

return SUCCESS;

}

}

We’re extending ActionSupport, which is a useful abstract base action class
that adds internationalization support and error-message handling. Our vali-
dation happens in the first four lines of the execute() method, as follows:

■■ The conditional clause does the actual check that the name field, which
is automatically set by WebWork by using the setName() method, is
not null and not “”. That is, it has a length greater than 0.

■■ If the field validation fails, we add an error message to the name field.
ActionSupport handles two types of error messages: field-level and
action-level errors. The UI components will automatically look for this
error when displaying the field and display it if it exists.

■■ Lastly, we return to an ERROR view, rather than the SUCCESS view,
since this action didn’t successfully execute. The ERROR view can be
the same page as our originally submitted JSP — presumably with error
messages printed.

Model View Controller with WebWork 121

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 121

Writing validation code like this gives us very fine-grained control. How-
ever, it tends to result in a significant duplication in validation code among dif-
ferent actions and bloats our action unnecessarily. Let’s look now at the
validation framework provided by XWork that solves these problems.

Exploring an Example with XWork Validation Framework
XWork comes with a very neat validation framework built in. Instead of vali-
dating your inputs in code, validation is handled by a series of pluggable Val-
idator classes and XML configuration files that map the validators to actions
and fields. The framework decouples validation from the action itself and
allows for much greater reusability of individual validations.

So, how is this framework used? Let’s rewrite the previous example to use
it. First, our action becomes much simpler:

import com.opensymphony.xwork.ActionSupport;

public class HelloWorld extends ActionSupport {

String name;

String greeting;

public void setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

public String getGreeting() {

return greeting;

}

public String execute() {

if (hasErrors()) {

return ERROR;

}

greeting = “Hello, “ + name;

return SUCCESS;

}

}

Note that our execute() method just checks if there are any errors at all. If
there are, it returns the ERROR view. So, where are the errors added, and how
do we define our validation? Let’s look at the HelloWorld-validation
.xml file, which is placed in the same package as the HelloWorld action itself:

122 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 122

<validators>

<field name=”name”>

<field-validator type= “requiredstring” >

<message>Please enter a valid name.</message>

</field-validator>

</field>

</validators>

The requiredstring validator does exactly the same thing as our earlier code,
which validates that a String is not null and has a length greater than 0. The dif-
ference is that, this time, we’re taking that validation and applying it to a par-
ticular field (name) with a particular error message. We could then reuse this
validation elsewhere or apply other validations to the same field. Now we
know how to validate an action so let’s look at how we set up the validation
framework itself.

Using Built-In and Custom Validators
Validation is applied by a single interceptor class, ValidationInterceptor, which
must be in your interceptor stack for validation to occur. Apart from that, all
we need to do is define the set of validators our validations can use.

Validators are defined in a validators.xml file, which are stored in the
WEB-INF/classes directory of your Web application. Let’s look at a sample
of that file, which shows the eight built-in validators:

<validators>

<validator name=”required” class=”com.opensymphony.xwork Æ

.validator.validators.RequiredFieldValidator”/>

<validator name=”requiredstring” class=”com.opensymphony.xwork Æ

.validator.validators.RequiredStringValidator”/>

<validator name=”int” class=”com.opensymphony.xwork.validator Æ

.validators.IntRangeFieldValidator”/>

<validator name=”date” class=”com.opensymphony.xwork Æ

.validator.validators.DateRangeFieldValidator”/>

<validator name=”expression” class=”com.opensymphony.xwork Æ

.validator.validators.ExpressionValidator”/>

<validator name=”fieldexpression” class=”com.opensymphony.xwork Æ

.validator.validators.FieldExpressionValidator”/>

<validator name=”email” class=”com.opensymphony.xwork Æ

.validator.validators.EmailValidator”/>

<validator name=”url” class=”com.opensymphony.xwork. Æ

validator.validators.URLValidator”/>

</validators>

The built-in validators validate fields, Strings, number and date ranges, e-mail
addresses, URLs, and arbitrary expressions. However, they are by no means a
complete set. They are the basic validations you will reuse many times, but it’s

Model View Controller with WebWork 123

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 123

likely your application will require you to write custom validator classes. This is,
of course, very simple to do!

Validators must implement the com.opensymphony.xwork.validator.Validator
interface and come in two types: action and field validators. These implement the
com.opensymphony.xwork.validator.FieldValidator interface. Action validators
provide validation of the action overall; whereas, field validators are used to
validate individual fields.

To write a custom validator, the easiest way is to extend one of the provided
base classes — ValidatorSupport and FieldValidatorSupport — for action
validators and field validators, respectively.

Let’s build a sample custom validator class for our HelloWorld action. As
well as validating that the name is a nonzero length String, let’s assume we
wanted to verify that the name submitted was the name of someone in our
system. We might do this like so:

public class SystemUserValidator extends FieldValidatorSupport {

public void validate(Action action) throws ValidationException {

String fieldName = getFieldName();

String username = (String)this.getFieldValue(fieldName, action);

if (UserManager.getUser(username) == null) {

addFieldError(fieldName, action);

}

}

}

Our validator gets the field value out of the action — in our case, the sub-
mitted name — and then tries to use some UserManager class to look up the
user in the system. Our UserManager returns null if the user is not valid. So,
all we have to do is add the error message to the action in that case.

To use this validator against the action, we don’t need to modify the action
at all. We need to add the following line to validators.xml:

<validator name=”properuser”

class=”com.ouraplication.validators.SystemUserValidator”/>

And then update the HelloWorld-validation.xml file as follows:

<validators>

<field name= “name” >

<field-validator type= “requiredstring” >

<message>Please enter a valid name.</message>

</field-validator>

<field-validator type= “properuser” >

<message>The name entered is not a valid user.</message>

</field-validator>

</field>

</validators>

124 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 124

Our name field will now be validated by both classes, and our action now
validates both that the name is a valid String and that it matches a user within
our system. We can also reuse our SystemUserValidator class in other actions
by simply adding it to their –validation.xml file.

Using the Expression Validator
One particularly powerful validator that comes with XWork is the Expression-
Validator. It simply validates that a given OGNL expression — evaluated
against your action — returns true.

As we have just seen, writing custom validators in Java classes is relatively
easy, but, most of the time, it is unnecessary. Frequently, the ExpressionValida-
tor can be substituted to create custom validations by using just XML.

Assume we are validating a new user signup action. Most user signups
require a user to enter the desired password twice to confirm they did not make
a mistake the first time they typed it. Now, we could validate that these two
passwords are the same by writing a PasswordConfirmationValidator class
to compare them. However, we can do this same task by using the existing
expression validator, as follows:

<field name=”confirm”>

<field-validator type=”fieldexpression”>

<param name=”expression”> password.equals(confirm)</param>

<message>The two passwords entered don’t match.</message>

</field-validator>

</field>

This sample shows the expression validator in use. The expression to be
evaluated is specified in the “expression” parameter of the validator. In this
case, the expression validated is password.equals(confirm). Where do
these values, password and confirm, come from? Our expression validator
will get the field values out of our action by using getPassword() and
getConfirm() and then check that they are equal.

The expression validator allows us to write very powerful validations with-
out writing any Java code, and, because it uses OGNL, the same expression
language as the rest of XWork, creating new validations is very simple.

Summary

In this chapter, we took an in-depth look at XWork and WebWork. We dis-
cussed the basics of MVC as well as the notion of actions in terms of XWork.
We then looked at how WebWork provides view support on top of XWork and
how the OGNL expression language can be used for very powerful queries of
your Java object models.

Model View Controller with WebWork 125

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 125

Next, we looked at the advanced features, such as the ValueStack, type
conversion, interceptors, and validation. There is much more to XWork and
WebWork, but this chapter should provide more than enough information to
get you started and writing your own MVC-based application by using these
technologies.

126 Chapter 6

09 463620 Ch06.qxd 10/28/03 8:48 AM Page 126

127

It is likely you’ve come across problems mixing layout-specific HTML (such as
corporate branding) with the content of the application (such as JSP forms or
search results). If not handled properly, code can become very messy and hard
to maintain.

To solve these problems, this chapter takes a step back from HTML and
looks at how you could approach these issues in an object-oriented world. We
look at some specific design patterns that are commonly used in non-Web GUI
application development (such as Swing). We introduce SiteMesh, an Open
Source tool that can help you implement these patterns using HTML and JSP,
and show some examples of it working. Lastly, we offer you some general tips
and tricks to help get the most out of SiteMesh.

Identifying Problems with Layout

As developers, we constantly strive to create clean, elegant, and simple code
(we hope!). Clean code can make a system easier to write, read, and maintain.
When working with Java code, we can use OO design techniques to simplify
the problem; however, these solutions do not map so well to HTML and JSP.

Simplifying Layout
with SiteMesh

C H A P T E R

7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 127

Let’s use a login screen as an example:

<html>

<head>

<title>Please login</title>

</head>

<body>

<form action=”login.action” method=”post”>

<input type=”hidden” name=”section” value=”store”>

Login Name:

<input type=”text” name=”loginname”>

Password:

<input type=”password” name=”password”>

<input type=”submit” value=”Login”>

</form>

</body>

</html>

This code is simple. Every tag has an obvious meaning. The screen has all
the content to meet the requirements of the login screen. Figure 7.1 shows what
it looks like. It seems to be lacking something.

Of course, the combined forces of the boss and the graphic designer need it
to look more graphically pleasing, as in Figure 7.2.

Figure 7.1 A functional login window

128 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 128

Figure 7.2 A prettier functional login window

With some HTML wizardry, the screen can easily be modified to meet this
requirement; however, the original 20 lines of HTML jump up to 300. As more
and more ideas are added to the layout, the HTML grows and grows, dwarf-
ing the actual elements that make the content of the page in the first place: the
login form and fields.

As these elements disappear into the page, it becomes less obvious how the
form works, making it harder to maintain and increasing the chance of bugs. For
example, from the original form, it is very obvious that there’s a hidden input
field called “section.” If this was mixed up with lots of layout-specific HTML,
there’s a high chance the element could be missed when examining the code.

Now when a new page is added to the application it is likely that much of the
layout of the login screen must be applied to this, too. The HTML could be
copied and pasted from the login screen, but that would lead to duplication
(something we are always keen to avoid in development) and is particularly
tricky because it is heavily interweaved with the login form, which is not part
of our second page. As more and more pages are added to the application, so is
more and more HTML, causing a code explosion and maintenance nightmare.

If we were looking at multiple pages of Java code and spotted duplication,
we could easily solve this by refactoring the duplication into common. Like-
wise, a server-side include (SSI) allows us to do this with JSP. If we were to
look at the layout and content-specific elements across the various pages, we
would likely see a lot of duplication that can be separated into include files
methods (see Figure 7.3).

Simplifying Layout with SiteMesh 129

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 129

Figure 7.3 Refactoring common code into include files

<
ta

b
le

>

<
tr

>

<

td
>

Lo
g

in
<

/t
d

>

<
/t

r>

<
tr

>

<

td
>

<

fo
rm

 m
et

h
o

d
=

"p
o

st
">

<
in

p
u

t
 t

yp
e=

"t
ex

t"

n
am

e=
"u

se
rn

am
e"

>
<

b
r>

<
in

p
u

t
ty

p
e=

"s
u

b
m

it
">

<

/f
o

rm
>

<
/t

d
>

<

/t
r>

<
/t

ab
le

>

<
In

cl
u
d

e
1

>
Lo

g
in

<
In

cl
u
d

e
2

>
<

fo
rm

 m
et

h
o

d
 –"

p
o

st
">

<

in
p

u
t

ty
p

e=
"t

ex
t"

n
am

e=
"u

se
rn

am
e"

>
<

b
r>

<

in
p

u
t

 t
yp

e=
"s

u
b

m
it

">
<

/f
o

rm
>

<
In

cl
u
d

e
 3

>

<
In

cl
u
d

e
1

>
Se

ar
ch

<
In

cl
u
d

e
2

>
<

fo
rm

>

Se
ar

ch
 f

o
r:

<

in
p

u
t

 t
yp

e=
"t

ex
t"

n
am

e=
"s

ea
rc

h
">

<
/f

o
rm

>
<

In
cl

u
d

e
 3

>

<
In

cl
u
d

e
1

>
R

es
u

lt
s

<
In

cl
u
d

e
2

>
<

b
>

Fo
u

n
d

:
<

/b
>

<
b

r>
<

w
w

:
it

er
at

 o
r>

<

w
w

:
p

ro
p

er
ty

/>
<

b
r>

<
/w

w
:

it
er

at
 o

r>
<

In
cl

u
d

e
 3

>

<
ta

b
le

>

<
tr

>

<

td
>

<
/t

d
>

<

/t
r>

<
tr

>

<

td
>

<
/t

d
>

<

/t
r>

<
/t

ab
le

>

<
ta

b
le

>

<
tr

>

<

td
>

Se
ar

ch
<

/t
d

>

<
/t

r>

<
tr

>

<

td
>

<

fo
rm

>

Se

ar
ch

 f
o

r:

<
in

p
u

t
ty

p
e=

"t
ex

t"

n

am
e=

"s
ea

rc
h

">

<
/f

o
rm

>

<

/t
d

>

<
/t

r>
<

/t
ab

le
>

<
ta

b
le

>

<
tr

>

<

td
>

R
es

u
lt

s<
/t

d
>

<

/t
r>

<

tr
>

<
td

>

<
b

>
Fo

u
n

d
:

<
/b

>
<

b
r>

<
w

w
:it

er
at

 o
r>

<

w
w

:p
o

rp
er

ty
/>

<
b

r>

<
/w

w
:it

er
at

o
r>

<
/t

d
>

<

/t
r>

<
/t

ab
le

>

130 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 130

But adding server-side includes leads to more complexity. Consider this
piece of code:

...

<table>

<tr><td style=”color:navy; font-size:20px”>

Search form

</td></tr>

<tr><td style=”font-face: arial”>

<form action=”search.action”>

<input type=”text” name=”query”>

<input type=”submit” value=”Search”>

</form>

</td></tr>

</table>

...

The layout-specific elements can easily be extracted into include files, short-
ening the page to:

...

<jsp:include page=”form-header.jsp”/>

Search form

<jsp:include page=”form-middle.jsp”/>

<form action=”search.action”>

<input type=”text” name=”query”>

<input type=”submit” value=”Search”>

</form>

<jsp:include page=”form-footer.jsp”/>

...

This simplifies the content by separating the layout, but that simplification
comes at the expense of the maintainability of the layout. For example,
form-middle.jsp contains

</td></tr>

<tr><td style=”font-face: arial”>

That’s a very confusing piece of code. It’s not even well-formed HTML.
Maintaining lots of these snippets of code gets complicated very quickly. It’s
very hard to design layout in this way, as it’s not obvious how each of the snip-
pets are assembled in the page. The snippet of code is incomplete.

It is also beneficial to make use of specialized Web-development tools that
can aid in designing complicated pages, such as WYSIWYG editor packages;
however, these tools are effective only when developing entire pages — they
provide little help for malformed include snippets.

Simplifying Layout with SiteMesh 131

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 131

Using the Object-Oriented Solution

If we were dealing with layout problems in a traditional GUI application (that
is, not a Web-based application), we could consider looking at any design pat-
terns that may solve this. So let’s do that by treating the various components
that make up a page as objects so we can make use of the same patterns.

132 Chapter 7

JSP SERVER-SIDE INCLUDES

JSP supports two different forms of server-side includes: those that insert the
included file at JSP compilation time and those that insert the included file at
runtime.

Compile-time includes look like the following:

<%@ include file=”mypage.jsp” %>

These includes

◆ Can only include JSP pages.

◆ Do not allow a different file to be included at runtime. In the preceding
code, mypage.jsp is constant — it cannot be changed.

◆ Allow variables to be shared between files, which can offer convenience
but can also lead to confusion if variable declarations are hidden.

◆ Can cause problems with JSP pages built using these types of includes
because pages are often incomplete, resulting in badly formed HTML in
multiple files.

◆ Do not add any overhead at runtime.

Runtime includes look like the following:

<jsp:include page=”mypage.jsp”/>

or

<% pageContext.include(“mypage.jsp”); %>

These type of includes

◆ Are not restricted to JSP includes; you could use static files or the results
from other Servlets.

◆ Allow the include file to be dynamically chosen at runtime.

◆ Run within their own scope; that is, variables are not shared between
them. However, values can be explicitly passed between the pages using
the <jsp:param> tag. These values have to be strings and are handled
by the included file as if they were parameters posted to the page.

◆ Require extra processing by the Servlet container at runtime.

In short, runtime includes offer greater flexibility, whereas compile-time
includes perform better. Choose the one that best suits your needs.

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 132

Figure 7.4 Plain content pages combined with a decorator to produce the best of both
worlds

Decorator Design Pattern
The decorator design pattern can be used in a GUI to apply a visual style
known as a decorator to any other component. Decorators can be created with

P
le

as
e

lo
g

in

U
se

rn
am

e:

Pa
ss

w
o
rd

:

Se
ar

ch

G
o

R
es

u
lt

s

Fo
u
n

d
:

-
ap

p
le

s
-

o
ra

n
g

es
-

le
m

o
n

s

N
ew

s
It

em
s

-
b

la
h

-
b

la
h

N
av

ig
at

io
n

-
b

la
h

-
b

la
h

(T
IT

LE
)

(B
O

D
Y

)

N
ew

s
It

em
s

-
b

la
h

-
b

la
h

N
av

ig
at

io
n

-
b

la
h

-
b

la
h

P
le

a
se

 L
o

g
in

U
se

rn
am

e:

Pa
ss

w
o
rd

:
N

ew
s

It
em

s
-

b
la

h
-

b
la

h

N
av

ig
at

io
n

-
b

la
h

-
b

la
h

Se
a
rc

h

G
o

N
ew

s
It

em
s

-
b

la
h

-
b

la
h

N
av

ig
at

io
n

-
b

la
h

-
b

la
h

R
e
su

lt
s

Fo
u
n

d
:

-
ap

p
le

s
-

o
ra

n
g

es
-

le
m

o
n

s

Simplifying Layout with SiteMesh 133

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 133

standard JSP pages using a simple tag library. A decorator contains the layout
of the page and placeholders for inserting the content in the relevant places.
The decorator itself looks like a standard HTML page, allowing it to be easily
maintained even with visual Web-design tools.

Other components need not be aware of the decorators that are to be applied
to them and vice-versa. This decoupling makes it easy to match components
and decorators together in different combinations.

In the context of our Web application we can use the contents as components
and the layout as a decorator, as shown in Figure 7.4.

Composite Design Pattern
The composite design pattern allows for components to be nested inside other
components, which in turn allows components to be assembled in a treelike
structure to form more complicated layouts.

Take the example of a portal. There are many components that are assem-
bled together in a treelike structure to make the page (see Figure 7.5).

Figure 7.5 A typical Web page

134 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 134

These components can be broken down and assembled in a treelike struc-
ture such as the one shown in Figure 7.6. The page contains regions for navi-
gation, information, header, and the body. The body in turn contains smaller
regions for the welcome and main headline.

Combining the Patterns
Combining the decorator and composite design patterns, we can assemble a
Web page using pages, includes, and decorators, as shown in Figure 7.7.

Figure 7.6 Web page components broken down into tree structure

Page

Header

Navigation Body

Welcome

Headline

Information
Login

Downloads

Announcement

Page

Header Information

Login Downloads Announcements

Body

Welcome Headline

Simplifying Layout with SiteMesh 135

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 135

Figure 7.7 Page with decorator containing child component

Pa
g

e
D

ec
o
ra

to
r

Pa
g

e
C

o
n

te
n

t
C

h
ild

 D
ec

o
ra

to
r

C
h

ild
 C

o
n

te
n

t
Pa

g
e

D
ec

o
ra

to
r

Pa
g

e
C

o
n

te
n

t
ap

p
lie

d
 t

o

C
h

ild
 D

ec
o
ra

to
r

C
h

ild
 C

o
n

te
n

t
ap

p
lie

d
 t

o

in
cl

u
d

es

136 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 136

Figure 7.8 Relationships between components

The core of the page is the page content. This has the page decorator applied to
it. The page decorator itself includes further content — the child content. Like the
other content, the child content has a child decorator applied to it.

If we treat pages, includes, and decorators as object-oriented (OO) classes,
we can create a superclass called component that simplifies the relationships. In
this case, pages, includes, and decorators are all components that can be
applied to one another as follows:

■■ Components can contain includes.

■■ Decorators can be applied to components.

This can be summarized as a UML class diagram (see Figure 7.8). Decorators,
Pages, and Includes all extend the abstract type Component. Any type of Compo-
nent can include an Include. A Decorator can be applied to any type of Component.

Looking at the relationships in this way helps to simplify how a page can be
built up in a compentized manner.

Implementing the Solution with SiteMesh

If the components of the page were simple objects, the implementation of com-
plicated page layouts in a way that separates content from layout would be
easy. However, mapping this to HTML is slightly trickier because an HTML
document isn’t a structure you can apply OO patterns to — it’s a chunk of text.
That’s where SiteMesh comes in.

SiteMesh is system that can be added to a Web application that facilitates the
use of these patterns in the HTML world. SiteMesh can be downloaded from
the following URL:

http://www.opensymphony.com/sitemesh/

Component

Decorator Page Include

applied to includes

extends

Simplifying Layout with SiteMesh 137

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 137

NOTE Installation instructions are bundled with the download. The remainder
of this chapter assumes SiteMesh has been installed.

SiteMesh Fundamentals
SiteMesh is based on the Servlet 2.3 API and consists of an engine that can
parse outgoing pages or page fragments, determine if any decorator needs be
applied, and merge the appropriate decorator.

SiteMesh has been designed to be nonobtrusive to the content of the appli-
cation and thus does not impose any requirements as to how the HTML is gen-
erated. Content can come from a static .html file, JSP, Servlet, MVC framework,
an XSL transform, or even a legacy CGI script, making it easy to retrofit
SiteMesh to existing Web applications.

NOTE By default, SiteMesh processes only HTML content — media such as
images, PDFs, and downloads are ignored.

NOTE Although JSP is used to define decorators in the examples given here,
other view technologies can be substituted, such as Velocity.

The process of the applying a decorator to a page is as follows (see Figure 7.9):

■■ When an HTTP request is made to the Servlet container, SiteMesh inter-
cepts the request, using a Servlet Filter, and captures the resulting
HTML.

■■ This HTML is then parsed and any relevant content is extracted into a
Page object.

■■ A DecoratorMapper is queried to determine which Decorator need be
applied.

■■ The Servlet container forwards the request to the JSP containing the
decorator.

■■ The decorator generates the layout HTML with the content pulled from
the Page object.

138 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 138

Figure 7.9 Interaction between the components in the Servlet container

D
ec

o
ra

to
r

JS
P

 P
ag

es

C
o

n
te

n
t

JS
P

 P
ag

es

Se
rv

le
t

C
o

n
ta

in
er

Si
te

M
es

h

W
eb

B
ro

w
se

r

P
ag

e
P

ar
se

r

Si
te

M
es

h
Fi

lt
er

D
ec

o
ra

to
r

M
ap

p
er

Se
rv

le
t

D
is

p
at

ch
er

1
)

B
ro

w
se

r
m

ak
es

 r
eq

u
es

t

8
)

D
ec

o
ra

to
r

re
tu

rn
ed

 w
it

h
 P

ag
e

o
b

je
ct

 m
er

g
ed

 in

7
)

D
ec

o
ra

to
r

p
ag

e

re
q

u
es

te
d

2
)

Si
te

M
es

h
 f

ilt
er

in

te
rc

ep
ts

 c
o
n

te
n

t

re
sp

o
n

se

3
)

C
o
n

te
n

t

se
n

t
to

p

ar
se

r 4
)

Pa
g

e
o
b

je
ct

cr

ea
te

d

5
)

D
ec

o
ra

to
r

m

ap
p

er

q
u
er

ie
d

6
)

Su
it

ab
le

 d
ec

o
ra

to
r

d

et
er

m
in

ed

Simplifying Layout with SiteMesh 139

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 139

Creating a Decorator
Let’s revisit the original code sample and apply a new layout with SiteMesh.
The plain login form looks like this (refer to Figure 7.1):

<html>

<head>

<title>Please login</title>

</head>

<body>

<form action=”login.action” method=”post”>

<input type=”hidden” name=”section” value=”store”>

Login Name:

<input type=”text” name=”loginname”>

Password:

<input type=”password” name=”password”>

<input type=”submit” value=”Login”>

</form>

</body>

</html>

A decorator looks like a standard Web page but focuses on layout (see Fig-
ure 7.10). This is where all the smart graphics, tables, flashy DHTML doo-
daahs, and CSS styles reside. The actual content is omitted; instead, JSP tags
are inserted as placeholders where the title, header, and body of the original
content will be substituted when the decorator is applied. Because the page
takes the structure of a standard HTML document, it is easier to maintain and
is friendly to visual Web-development tools.

The following code shows a very simple SiteMesh decorator. For brevity, the
HTML has been cut down to the bare minimum.

[decorators/simple.jsp]

<%@ taglib uri=”sitemesh-decorator” prefix=”decorator” %>

<html>

<head>

<title><decorator:title/></title>

<link rel=”stylesheet” href=”style.css”>

<decorator:head/>

</head>

<body>

<table width=”100%”>

<tr>

<td class=”title” colspan=”2”>

<decorator:title/>

</td>

140 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 140

</tr>

<tr>

<td class=”body”>

<decorator:body/>

</td>

</tr>

</table>

</body>

</html>

In order for SiteMesh to determine which decorator (if any) to apply to a
page, a mapping needs to be set up in the decorators.xml file, which
resides in the WEB-INF directory.

Each decorator requires a name to uniquely identify it and the location of
the page that contains the layout. A pattern match is required to define which
URLs the decorator will be applied to. Pattern matches can use wildcards and
regular expressions. We shall set up a decorator that matches all page URLs in
the Web application using the * wildcard.

[WEB-INF/decorators.xml]

<decorators>

<decorator name=”simple” page=”decorators/simple.jsp”>

<pattern>*</pattern>

</decorator>

</decorators>

Figure 7.10 Decorated time and date page

Simplifying Layout with SiteMesh 141

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 141

If we visit the login form again, it now looks somewhat different (refer to
Figure 7.2).

We can now create additional content pages and SiteMesh will decorate
these, too, without any modification — no extra work is required because the
wildcard pattern will match all requests (see Figure 7.10).

[date.jsp]

<%@ page import=”java.util.Date” %>

<html>

<head>

<title>Time and date</title>

</head>

<body>

Right now, it’s:

<%= new Date().toString() %>

</body>

</html>

Composing Pages
We’ve seen how SiteMesh can apply decorators to pages; now let’s assemble a
page from more pages and decorators.

Let’s suppose we want to extend our decorator to allow it to act as a con-
tainer for another component. Let’s use the login page as the child component.
This page has no decoration, though, so it needs its own decorator.

We already have three out of four of these components — the child decora-
tor does not exist yet. This can be just like the first decorator; however, this dec-
orator is just for a small window of a page.

NOTE The child decorator can be used to apply layouts to smaller components
such as forms or portal windows.

[decorators/window.jsp]

<%@ taglib uri=”sitemesh-decorator” prefix=”decorator” %>

<table class=”window”>

<tr>

<th><decorator:title/></th>

</tr>

<tr>

<td>

<decorator:body/>

</td>

</tr>

</table>

142 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 142

In order for SiteMesh to know where this decorator is located, an entry is
made to decorators.xml. However, because this decorator is not to be
applied to a page, we leave the pattern matching out. When building the par-
ent decorator, we can explicitly state which child decorator is to be used.

[WEB-INF/decorators.xml]

<decorators>

<decorator name=”simple” page=”decorators/simple.jsp”>

<pattern>*</pattern>

</decorator>

<decorator name=”window” page=”decorators/window.jsp”/>

</decorators>

Finally, the parent decorator is modified to contain the reference to the child
component. The <page:applyDecorator> tag includes another component
and applies the new decorator to it.

[decorators/simple.jsp]

<%@ taglib uri=”sitemesh-decorator” prefix=”decorator” %>

<%@ taglib uri=”sitemesh-page” prefix=”page” %>

<html>

<head>

<title><decorator:title/></title>

<link rel=”stylesheet” href=”style.css”>

<decorator:head/>

</head>

<body>

<table width=”100%”>

<tr>

<td class=”title” colspan=”2”>

<decorator:title/>

</td>

</tr>

<tr>

<td class=”body” valign=”top”>

<decorator:body/>

</td>

<td valign=”top”>

<page:applyDecorator name=”window” page=”login.jsp”/>

</td>

</tr>

</table>

</body>

</html>

Simplifying Layout with SiteMesh 143

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 143

NOTE Although the included login.jsp is a full HTML document, only the
actual body of it is displayed in the page. This means that text outside of the
<body> tag will not be displayed in the final page, as shown in Figure 7.11.

Another approach we can take to inserting a composite component is to
apply a decorator to an inline fragment of page by providing a body to the
<page:applyDecorator> tag. The body of the content is obtained from the
body of the tag, and the title is passed in as an attribute (see Figure 7.12).

[decorators/simple.jsp]

...

<td valign=”top”>

<page:applyDecorator name=”window” page=”login.jsp”/>

<page:applyDecorator name=”window” title=”Disclaimer”>

This site is not legally binding in any way.

All rights reserved. Elvis has left the building.

</page:applyDecorator>

</td>

...

Figure 7.11 Screenshot of final page

144 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 144

Figure 7.12 Final page with inline decorator

Exploring SiteMesh
The fundamentals of SiteMesh are generally enough to be productive with
immediately; however, it is useful to know a bit more detail about two areas of
the system: how to get to content from decorators and how the correct decora-
tor is selected for the page.

Getting to the Content

Let’s examine in more detail how the content and layout pages are merged.
SiteMesh has a PageParser object that takes the data outputted by the con-
tent page and parses it into a Page object. This Page object is later made avail-
able to the decorator page.

NOTE The parser in SiteMesh has been built with one thing in mind:
performance. The actual overhead and time added to a request is minimal,
making it feasible to use SiteMesh in sites that receive heavy traffic. The
performance bottlenecks in a Web application are typically caused by network
latency such as the incoming HTTP request, database queries, or RPC calls.

Simplifying Layout with SiteMesh 145

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 145

Any data held in the Page object can be inserted into the decorator, either
via the decorator JSP tag library or by programmatically accessing the object,
which is stored as an attribute in the HTTP request.

As well as the head, title, and body, a page has a number of keyed proper-
ties associated with it that allow data to be passed from the content to the dec-
orator using HTML tags.

An example of a property the decorator can access is an HTML <meta> tag.
This is a standard HTML tag that can appear in the <head> of a document,
which is used to attach meta-data to the document. Every <meta> tag that
appears in the content is available to the decorator.

To demonstrate this, we will create a decorator that displays the title and
author of each page as part of the layout. Suppose a content page has the fol-
lowing header:

<html>

<head>

<title>Press Release</title>

<meta name=”author” content=”Jaimie Calderwood”>

</head>

...

A decorator can access both the title and author properties using the
JSP tags:

<%@ tablib uri=”sitemesh-decorator” prefix=”decorator” %>

...

Title: <decorator:title/>

Author: <decorator:getProperty property=”meta.author”/>

...

Alternatively, the properties can be accessed using the Page object. To make
this available to the JSP page as a scriptlet, the <decorator:useHtmlPage>
tag is used. This is useful if more complicated logic is required (such as condi-
tionals or string manipulations). The following snippet is functionally identi-
cal to the previous snippet:

<%@ tablib uri=”sitemesh-decorator” prefix=”decorator” %>

...

<decorator:useHtmlPage id=”content”/>

Title: <%= content.getTitle() %>

Author: <%= content.getProperty(“meta.author”) %>

...

The output from this decorator, once the content has been merged in, will
thus look like the following:

Title: Press Release

Author: Jaimie Calderwood

146 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 146

Table 7.1 lists the common operations for retrieving the data contained in
the content from the decorator. It lists the Java methods and JSP tag equiva-
lents — you can use either.

The following properties can be retrieved from the content:

■■ Content of the <meta> tags.

■■ Attributes of the <body> tag.

■■ The content of the SiteMesh-specific <parameter> and <content>
tags.

This is better illustrated by looking at an example piece of HTML:

<html>

<head>

<title>The title</title>

<meta name=”author” content=”Somebody”>

<meta name=”category” content=”News”>

</head>

<body onload=”alert(‘hi’)”>

<parameter name=”icon” value=”urgent.gif”>

<p>Hello world</p>

<content tag=”summary”>

Short summary

</content>

</body>

</html>

Table 7.1 Accessing Data from the Page Object

JAVA METHOD JSP TAG DESCRIPTION OF CONTENT

String getTitle() <decorator:title Retrieve the value of the <title>
[default=”...”]/> tag. If content does not have a

title, default will be substituted.

void writeHead(<decorator:head/> Write the contents of the
OutputStream out) <head> tag, excluding the title.

void writeBody(<decorator:body/> Write the contents of the
OutputStream out) <body> tag.

String getProperty(<decorator: Retrieve the value of a specific
String key) getProperty property in the page. If the

property=”...” property does not exist, default
[default=”...”]/> will be substituted.

Map getProperties() Retrieve all key/value properties
of the page.

Simplifying Layout with SiteMesh 147

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 147

With this content, the following properties will be available in the Page
object:

meta.author = Somebody

meta.category = News

body.onload = alert(‘hi’)

page.icon = urgent.gif

page.summary = Short summary

Passing properties around this way allows pages to pass data to the layout.
An example of this is a page specifying the category of the site it is in by using
a <meta> tag so that the decorator can adjust the color scheme accordingly.

Mapping Decorators

Recall that after a page has been parsed, a DecoratorMapper (hereafter
referred to as a mapper) is queried to determine which decorator to apply to the
content. SiteMesh has the ability to plug in additional mappers to allow cus-
tom rules to define how a decorator is selected.

Mappers can be chained together, allowing a mapper to select a decorator
or, if it cannot, to delegate to another mapper. This relationship is known as the
Chain of Command design pattern.

SiteMesh is bundled with a collection of useful mappers in the com
.opensymphony.module.sitemesh.mappers package. These mappers
are described in Table 7.2.

Table 7.2 DecoratorMappers Bundled with SiteMesh

CLASSNAME DESCRIPTION

ConfigDecoratorMapper Reads the decorators.xml file to select a
decorator based on a URL pattern.

FrameSetDecoratorMapper Ensures that HTML pages containing a
<frameset> tag are not decorated.

PageDecoratorMapper Allows a content page to choose its own
decorator by specifying a <meta
name=”decorator” content=”...”>
tag.

PrintableDecoratorMapper If a URL is requested with printable=true
as a parameter, this mapper forces the use of
the decorator named “printable”. This is
typically used to serve up printer-friendly
versions of pages.

148 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 148

Table 7.2 (continued)

CLASSNAME DESCRIPTION

AgentDecoratorMapper Allows alternative decorators to be used
depending on the type of browser accessing
the site. For example, a specialized decorator
could be served if the visitor is using Internet
Explorer.

OSDecoratorMapper Allows alternative decorators to be used
depending on the operating system that the
browser accessing the site is running on.

LanguageDecoratorMapper Allows alternative decorators to be used
depending on the language settings of the
browser accessing the site.

RobotDecoratorMapper Allows a specialized decorator to be served if
the site visitor is a search engine robot.
Generally, it is friendlier on the robot if
minimal layout HTML is returned, thereby
maximizing the effectiveness of the content.

By default, SiteMesh has the following DecoratorMappers setup (chained
in the same order):

■■ PageDecoratorMapper

■■ FrameSetDecoratorMapper

■■ PrintableDecoratorMapper

■■ ConfigDecoratorMapper

To add new decorators to the chain, the SiteMesh configuration file must be
modified. The default SiteMesh configuration is stored inside sitemesh.jar
in a file named sitemesh-default.xml. If this file is copied to the WEB-
INF directory and renamed to sitemesh.xml, SiteMesh will read its config-
uration from there instead.

Implementing custom mappers is beyond the scope of this book. More
information on custom mappers can be found at the SiteMesh Web site:
http://www.opensymphony.com/sitemesh.

Using Tips and Tricks

SiteMesh is a very flexible tool, and as such some best practices have devel-
oped over time as to how to get the most value out of it. The following sections
briefly look at some of those practices to use SiteMesh optimally within your
application.

Simplifying Layout with SiteMesh 149

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 149

Group Decorators Together
It often makes sense to group decorators and their included files into a single
directory tree (such as /decorators) within your Web application. This
helps to mentally differentiate between presentation and content.

Don’t Be Afraid to Include
SiteMesh doesn’t replace server-side includes; it makes them componen-

tized. Includes are still useful when using SiteMesh! For example, often you
will have multiple decorators for your application, all of which include a com-
mon footer — perhaps containing legal and copyright information. It makes
sense, then, to put this common information into a single JSP file and include
it from each of your decorators.

The important thing is to ensure all files containing HTML (whether from a
content page, a decorator, or include) contain valid HTML (that is, well-
balanced tags).

Following is an example of a good include:

<div class=”someStyle”>

Disclaimer: All facts on this site are fictional.

</div>

And the following is an example of a bad include (the HTML is not well
formed):

</td>

</tr>

<tr>

<td>

<div class=”someStyle”>

Disclaimer: All facts on this site are fictional.

</div>

</td>

CSS Is Your Friend
These days, all graphical browsers support Cascading Style Sheets (CSS). Your
application can benefit from having a common style sheet (or perhaps a set of
style sheets if your application is large) to provide a common stylistic look and
feel to each of the elements on the page, such as form controls and text sizes.

Because the content and presentation are combined into a single resulting
HTML page, using CSS with SiteMesh helps tie the two layers together nicely.
The same style sheet will be decorating both (as they produce one page) so
fonts and colors flow seamlessly between the layers.

150 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 150

We will discuss CSS, as well as other tools to help with look and feel, in more
detail in Chapter 17.

Minimize HTML
As a general rule, try to keep your HTML code as simple as possible — in both
tiers. Beyond the KISS (Keep It Simple, Stupid!) principle, writing simple HTML
helps in the content layer by making it easier to decorate with a decorator.

Separate Your Concerns
It is uncommon to meet people with both excellent development skills and
excellent Web-design skills. Development and design are very different tasks;
hence your company hired different people to do them.

SiteMesh separates the concerns of layout from the concerns of content,
enabling different people to specialize in different layers without stepping on
each other’s toes.

SiteMesh also makes it easier for different tools to be used for the two layers.
For example, it may be preferable to use a Java-aware IDE to edit the JSPs con-
taining the content, whilst a more graphical WYSIWYG tool can be used for
layout.

Summary

In this chapter, we’ve outlined the problems with mixing layout and content
code in pages — namely, that it causes duplication and makes it very hard to
maintain. We looked at how server-side includes can help but only to an
extent.

We then took a step back and analyzed how we could solve the problem in
an object-oriented world. We identified how the decorator design pattern can
be used to separate layout from content and how the composite design pattern
can be used to break pages into discrete components that can be arranged in a
nested structure.

We used SiteMesh to actually map these OO solutions to an HTML-based
application, which allows us to create decorators in HTML that are easy to
maintain. This results in a clean separation between layout and content that is
easier to maintain.

We then looked in more detail at how SiteMesh parses content pages and
how decorators are mapped to page. Finally, we looked at some techniques to
help get the most out of SiteMesh.

Simplifying Layout with SiteMesh 151

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 151

Breaking the pages down into smaller components allows for components
to focus on specific problems, similar to how we tackle complicated problems
with OO. These finer-grained components can then be assembled together to
produce the final pages of a Web application. While there are still many prob-
lems to deal with in a Web application, this simplifies one of them, allowing
more time to be spent on the tougher problems.

152 Chapter 7

10 463620 Ch07.qxd 10/28/03 8:48 AM Page 152

153

This chapter shows you how you can add sophisticated free text-based search
operations to your application — similar to that you’d find in search engines
found on the Web.

The first part of the chapter outlines some of the complexities of searching
and introduces Lucene. Then you learn how to index data and perform simple
queries by adding search support to the ContactInfo example we developed in
Chapter 5. Finally, you will learn how to perform more sophisticated queries.

Understanding the Complexities of Searching

Any enterprise application should provide searching capabilities; otherwise,
users would drown in information stored in these systems. Searching provides
a convenient way of getting the desired data out of these systems. However,
implementing searching can often get quite tricky.

The most common tool to aid in searching is SQL. SQL is good for simple
structured searches (such as find all employees born in the sixties who work in
the accounting department, ordered by last name). However, SQL often
reaches its limits quickly, particularly when related to fuzzy text searching,
large criteria sets, and ranking. SQL is also tied strongly to data stored in rela-
tional databases — which may not always be the case.

Adding Search Capabilities
with Lucene

C H A P T E R

8

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 153

The common problems associated with searching are:

■■ How do you search for the data with maximum speed and minimum
overhead? — We should respond to queries instantly. Users don’t want
to wait days for the result of a query. In fact, they don’t even want to
wait seconds — they want the results now. This means we should
store the data in a format that is searchable with maximum speed
and retrieves only the minimum amount of data required.

■■ How do you handle queries in a user-friendly way? — When you’re search-
ing, you expect to be able to perform case-sensitive and case-insensitive
searches. You also expect to be able to search for an exact phrase or only
part of a phrase. And, when you are searching the content of a docu-
ment, you want the system to handle grammatical differences of nouns
and verbs and return what you meant to search. It should suppress
meaningless common words such as “that” and “an” and so on (known
as stop words). Similar words should also be detected. How do you get
a search for “priority” to yield results containing ‘priorities’? It is also
desirable to build searches from binary operators (and, or, not).

■■ How do you rank results? — If a search query returns hundreds of results,
these need to be ordered with the most relevant matches first.

■■ How do you search through heterogeneous document types? — The data to
be searched may be a combination of plain text, HTML, PDF docu-
ments, XML, or properties of plain old Java objects. These may be
stored in memory, files, a relational database, or an LDAP server. How
can a single search retrieve data from all of these sources?

Fortunately, Lucene is here to help us to overcome these obstacles.

Introducing Lucene

Lucene is a free, Open Source, high performance, and full-featured text search
engine written entirely in Java and available from http://jakarta.apache
.org/lucene/.

Lucene addresses all of the previously mentioned problems, providing a
simple, yet powerful, API that can be customized for many specific needs. On
top of that, Lucene boasts impressive performance even with very large
amounts of data.

Understanding the Elements of Lucene
Performing a full text search in Lucene involves two steps:

■■ Setting up indexes — The data should be indexed so that Lucene can
later perform efficient queries over them.

154 Chapter 8

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 154

■■ Creating queries and running them — To perform a full text search, the
query should be created and parsed. Then it should be run over the
indexes. The found hits are returned and used by the application.

Lucene’s API makes it easy to do this. Here is a bird’s eye view of Lucene’s
API:

■■ Document — Represents an item to be searched. This can be built up
from any data. A Document contains a set of named Fields.

■■ Analyzer — Breaks the data of a Document down into tokens that can be
efficiently indexed.

■■ IndexWriter — Used for creating indexes. An Index contains the analyzed
tokens from Documents, designed in a manner that is fast to query.

■■ IndexReader — Used to access the index and to perform low-level opera-
tions on it.

■■ IndexSearcher — Used for performing queries on the IndexReader.

So let’s enhance the sample application we’ve developed in Chapter 5 and
add indexing and searching to it. We will provide full text searching on the
first names and last names of the contacts.

NOTE Often, there is confusion as to what Lucene is. Just as we said, it does
only two things: creates indexes and searches those indexes. It does not
automatically index any type of content. That means if you want Word
documents, PDFs, or HTML files to be indexed, it is up to you to parse those
various data formats and then pass the raw data strings to Lucene. There are
numerous libraries available that can make this easier — see the Lucene
Web site.

Indexing a Document
The first thing we must do is build an index of the ContactInfo instances. To
build the index, an instance of Lucene’s IndexWriter class is required. This
class is the gateway to Lucene’s indexing capabilities and allows searchable
data to be written to an index.

We will create a utility class called ContactInfoSearcher for dealing with
different aspects of indexing and searching for the ContactInfo objects. The
following lines of code create an IndexWriter instance, which will be used by
other methods of ContactInfoSearcher to perform indexing:

public class ContactInfoSearcher {

String indexDir = “index”; // directory storing index files

Adding Search Capabilities with Lucene 155

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 155

private IndexWriter openIndexWriter() throws IOException {

Analyzer analyzer = new StandardAnalyzer();

return new IndexWriter(indexDir, analyzer, true);

}

}

The openIndexWriter method is a simple utility method that creates an
IndexWriter. Index files are created in the folder that indexDir points to, which
is a directory named index under the current working directory. If the direc-
tory doesn’t already exist, Lucene creates it for you.

The second parameter of the constructor is an instance of a subclass of ana-
lyzer. The analyzer is used for tokenizing text. Lucene comes with various
built-in analyzers. Here we use StandardAnalyzer, which removes stop words
(“and,” “an,” and so on) from the token text and normalizes it to lowercase.
This is suitable for most English-language text searches.

The last argument tells IndexWriter whether to create a new index from
scratch or to add documents to an existing one. Specifying true forces a new
index to be created.

After creating the index, we build up Documents containing the fields of the
ContactInfo to be indexed.

public class ContactInfoSearcher {

// ...

private Document buildDocument(ContactInfo contact) {

Document document= new Document();

document.add(Field.Keyword(“id”,

String.valueOf(contact.getId())));

document.add(Field.Text(“firstName”, contact.getFirstName()));

document.add(Field.Text(“lastName”, contact.getLastName()));

return document;

}

A Document consists of one or more Fields. A Field contains a key and a
value, making a Document similar to a hashtable. The keys and values must be
Strings. We added three fields to the preceding code, the first being the ID for
the object and the second being standard Java properties.

There are four types of Fields used in Documents. Notice how the ID is of
type keyword, whereas the firstName and lastName are of type text. Depending
on the content of the field, you would use a different type. These are the
options:

156 Chapter 8

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 156

■■ Field.Text — Text fields are tokenized, indexed, and stored in the index.
So they can be searched quickly because they are indexed and the con-
tent is physically stored in the index files. You shouldn’t use Text fields
for big data, because they can make the index files larger and larger
and, hence, less efficient. We used Text fields for firstName and last-
Name. Because these two properties are physically stored in the index
files and are indexed, we can search on them.

■■ Field.UnIndexed — UnIndexed fields are neither tokenized nor indexed,
but their value is physically stored in the index. This field is typically
used for storing fields that you need to display with search results, but
no search is performed on them. Like Text fields, you should be careful
about the size of these fields.

■■ Field.Keyword — Keyword fields are not tokenized, but are indexed and
stored in the index. This is useful in cases where the original value of
the field should be stored untouched (such as URLs, dates, special
names, and so on). We marked id as a Keyword field. The id field actu-
ally contains the primary key of the ContactInfo object we’re indexing.
By storing this id, we can map the search results back to the original
ContactInfo instances.

■■ Field.UnStored — UnStored fields are tokenized and indexed, but are
not stored in the index. They are useful for indexing large amounts of
text that does not need to be retrieved in its original form (such as the
bodies of Web pages or long texts).

The final step to building an index is to add the Document to it.

public class ContactInfoSearcher {

// ...

private Document index(ContactInfo contact)

throws IOException {

IndexWriter indexWriter = openIndexWriter();

try {

Document document = buildDocument(contact);

writer.addDocument(document);

writer.optimize();

} finally {

writer.close();

}

}

To index the document, simply call the addDocument() method.

Adding Search Capabilities with Lucene 157

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 157

After adding a Document, the optimize() method is called, which
optimizes the index on disk to allow for faster retrieval.

Finally, the writer should be closed when modifications are complete.
The optimize() method does not have to be called every time a Docu-

ment is added. When adding multiple Documents in a large batch, it is more
efficient to call optimize() at the end of the batch, like this:

public class ContactInfoSearcher {

// ...

public Document indexBatch(ContactInfo[] contact)

throws IOException {

IndexWriter indexWriter = openIndexWriter();

try {

// index batch

for (int i = 0; i < contacts.length; i++) {

Document document = buildDocument(contacts[i]);

writer.addDocument(document);

}

writer.optimize();

} finally {

writer.close();

}

}

We now have a class capable of indexing ContactInfo instances. To use it, all
we need to do is create a few contacts and pass them in:

ContactInfo joe = new ContactInfo();

joe.setFirstName(“Joe”);

joe.setLastName(“Walnes”);

joe.setId(1);

ContactInfo ara = new ContactInfo();

ara.setFirstName(“Ara”);

ara.setLastName(“Abrahamian”);

ara.setId(2);

ContactInfoSearcher searcher = new ContactInfoSearcher();

searcher.index(joe);

searcher.index(ara);

That’s it. A contact is stored in Lucene’s index files and is now ready for
querying.

It’s worth explaining the structure of the indexes Lucene creates. The direc-
tory where we decided to store the index files contains many different
files. They are grouped together with some prefixes and different extensions.

158 Chapter 8

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 158

These groups of files are called segments. It’s the job of the optimize()
method of IndexWriter to consolidate different segments and create a more
efficient segment.

You might wonder how concurrent access to the index files is handled by
Lucene. Lucene locks the index while updating it, so no more than one thread
can modify the index at a time. If simultaneous modifications are possible in
an application (such as modifying the index in a live Web application), you
should make sure you modify only the index from one thread. There are many
different ways to handle this. You can use JMS queues, a job scheduler, or any
other mechanism.

Searching Documents
Now that we have an index, we should run queries on it. The basic steps are to
open an IndexSearcher and pass in a Query object, which returns Hits as a
result.

public class ContactInfoSearcher {

String indexDir = “index”; // directory storing index files

public Hits search(String fieldname, String criteria)

throws ParseException, IOException {

// open IndexSearcher

IndexSearcher searcher = new IndexSearcher(indexDir);

try {

Query query = buildQuery(fieldname, criteria);

hits = searcher.search(query);

} finally {

searcher.close();

}

}

The Query object is created by the buildQuery() method that follows:

public class ContactInfoSearcher {

// ...

private Query buildQuery(String fieldname, String criteria)

throws ParseException {

Analyzer analyzer = new StandardAnalyzer();

QueryParser parser = new QueryParser(fieldName, analyzer);

return parser.parse(criteria);

}

Adding Search Capabilities with Lucene 159

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 159

To build the Query, an analyzer is required. This should be the same type of
analyzer as used when building the index in the first place. A QueryParser is
then responsible for taking a String of search terms and converting that into a
Query.

To build a Query, two inputs are required — the fieldName and the criteria.
The fieldName specifies which field to search through and the criteria is the
actual term to look for. If the criteria are not formed correctly, a ParseException
is thrown.

The returned Hits object contains the results of the query. The results are
ordered based on rank (that is, the closest-matching search first). Table 8.1 lists
the most frequently used methods of Hit.

That’s the code for the searching complete. This is how the class can be used:

ContactInfoSearcher searcher = new ContactInfoSearcher();

// perform search

Hits hits = searcher.search(“firstName”, “joe or fred”);

if (hits.length() == 0) {

// no results found

System.out.println(“No results found”);

} else {

// iterate over results

for(int i = 0; i < hits.length(); i++) {

Document document = hits.doc(i);

System.out.println(“--- Result “ + i);

System.out.println(“First Name: “ + document.get(“firstName”));

System.out.println(“Last Name : “ + document.get(“lastName”));

System.out.println(“ID : “ + document.get(“id”));

System.out.println(“Score : “ + hits.score(i));

}

}

Note that the query is “joe or fred.” This will match the contact with a first-
Name of “Joe.”

Table 8.1 Frequently Used Methods of Hit

METHOD DESCRIPTION OF RETURN VALUE

int length() The number of results returned by the search.

Document doc(int n) Fetch the nth Document in the results.

float score(int n) Fetch the score of the nth hit (between 0 and 1).

160 Chapter 8

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 160

Reindexing and Removing an Indexed Document
You’ve learned how to index and search a document. Now, what if we want to
remove a document or update it? Obviously, whenever we remove or update
a ContactInfo in the database, the index files should be updated, too.

To remove a Document from the index, we have to read the Index and find
the location of the Document.

To read the index, the IndexReader class is used. In order for the Document
to be located in the index, you must supply a Term. This is an exact match of
field name and value — a unit of search. The IndexReader provides a conve-
nience method to delete all Documents with a given Term in the document.

We can use the ID of the contact to get an exact match:

public class ContactInfoSearcher {

String indexDir = “index”; // directory storing index files

public void unIndex (ContactInfo contact) throws IOException {

IndexReader reader = IndexReader.open(indexDir);

try {

Term term = new Term(“id”, String.valueOf(contact.getId()));

reader.delete(term);

} finally {

reader.close();

}

}

To reindex a Document, all we have to do is unindex it and then index it again.

public class ContactInfoSearcher {

// ...

public void reIndex(ContactInfo contact) throws IOException {

unIndex(contact);

index(contact);

}

Note that Lucene does not provide a facility for modifying an indexed doc-
ument directly, so we have to delete the indexed one and add a new document.
That’s because updating a document can invalidate the indexes and the seg-
ments, so we have to remove and append instead.

Using Advanced Searching
How flexible is Lucene in tokenizing text? So far, we’ve only tested Standard-

Analyzer by searching for “joe or fred.” The QueryParser allows for very flexi-
ble criteria to be specified. Remember that the criteria are case insensitive and
that the actual match can appear anywhere in the text. Table 8.2 demonstrates
some of the advanced queries that can be performed.

Adding Search Capabilities with Lucene 161

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 161

Table 8.2 Advanced Queries

EXAMPLE DESCRIPTION

ba*y Wildcards can be used anywhere within a word,
except at the very beginning.

(bert or ernie) and Common operators such as AND, OR, NOT are
muppet not kermit supported. Parentheses for grouping terms are also

supported. The other two operators are plus signs
(+) and minus signs (-). The plus sign requires an
expression to exist in the field. The minus sign is the
opposite.

“bert and ernie” Surrounding words with quotes states that an exact
phrase is to be used.

bart~ Fuzzy searches look for words spelled similarly, such
as “bert” or “fart.”

[apple to cabbage] Range searches look for any name that falls
alphabetically within this range.

“bucket spade”~5 Proximity searches ensure that the two words
specified must be within a certain number of words
of each other to be included.

lastName:walnes Search another field of the document.

As you can see, these queries are fairly similar to the way you search in
popular search engines found on the Web.

Customizing the Tokenization Process
The way Lucene tokenizes the text is completely dependent on the analyzer
chosen. You can tell Lucene how to analyze text by composing a new analyzer
out of various TokenFilter classes or by introducing your own Analyzer class.
So, for example, if searching for “puppy” should return records with the
words “puppy” or “puppies” in it, the StandardAnalyzer is not enough. The
StandardAnalyzer only tokenizes the text by splitting the text to tokens; then
it converts the tokens to lowercase and removes stop words. But it doesn’t do
anything for removing morphological endings from words in English. So
searching for “puppy” with StandardAnalyzer would not return a result if the
indexed text contains “puppies.”

We need to set up a new analyzer that does that, too, so we create a new
Analyzer class composed of different TokenFilter classes to achieve our goal.
Here is our CustomAnalyzer class:

162 Chapter 8

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 162

public class CustomAnalyzer extends Analyzer {

/**

* Processes the input by first converting it to

* lower case, then by eliminating stop words, and

* finally by performing Porter stemming on it.

*

* @param reader the Reader that provides access to the input text

* @return an instance of TokenStream

*/

public TokenStream tokenStream(Reader reader) {

TokenStream result = null;

result = new LowerCaseFilter(result);

result = new StopFilter(result,

StopAnalyzer.ENGLISH_STOP_WORDS));

result = new PorterStemFilter(result);

return result;

}

}

CustomAnalyzer extends the Analyzer abstract base class and tokenizes the
text in a custom way by overriding the tokenStream() method. Three
different TokenFilter classes are then used:

■■ LowerCaseFilter converts the text to lowercase.

■■ Then StopFilter is applied on the result returned from LowerCaseFilter
to remove common English stop words such as and, the, my, and so on.

■■ Then PorterStemFilter is applied on that result to run the Porter algo-
rithm on it, which removes the morphological endings from the tokens.

Lucene comes with a very rich set of built-in Analyzer and TokenFilter
classes. Some of these Analyzer classes are GermanAnalyzer, SimpleAnalyzer,
StandardAnalyzer, StopAnalyzer, and WhitespaceAnalyzer. Every language
has a different set of stop words, and, in this case, the GermanAnalyzer class
takes into account common German stop words instead of English stop words.
Many different TokenFilter classes are also provided. For a complete list of
these TokenFilter and Analyzer classes, refer to Lucene’s documentation.

To use this new analyzer, replace all occurrences of StandardAnalyzer with
CustomAnalyzer in ContactInfoSearcher, and you’ll have a cleverer searching
algorithm.

TI P If you change the anaylzer, you should rebuild the entire index so the
documents can be tokenized effectively.

Adding Search Capabilities with Lucene 163

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 163

Summary

In this chapter, we’ve outlined the complexities of searching. We learned about
Lucene and its differences with SQL SELECT queries. We learned that working
with Lucene consists of two main phases: indexing documents and searching
them. We learned how to index, re-index, and remove indexes, and how they
are stored on hard disk. We learned about different kinds of Fields and suitable
uses of each of them. Then we searched the indexes we’ve created with simple
and complex queries. Finally, we learned how to create a custom Analyzer
class and how to use TokenFilters.

164 Chapter 8

LUCENE VS. SQL SELECT OR OBJECT QUERY LANGUAGES

Weren’t SQL SELECT statements designed for finding data out of a pile of data?
Well, yes, but they have many limitations for performing full text searches. Even
SQL LIKE keyword is not flexible enough for these kinds of searches. LIKE is not
designed to handle full text searches. It doesn’t know about common words
such as “that” and “an.” It can’t treat different grammatical forms of words at
all. It can even be slow because of joining tables, calling SQL functions, or
loading too much data. Object query languages, such as Hibernate’s query
language, are another option, but in the end they also execute SQL statements,
so they bear the same limitations.

Furthermore, not all SQL queries work on all databases, so portability can
become a problem. For example, the LIKE operator is not supported by all
vendors. Likewise, the syntax for outer joins might vary from database to
database. Rather than trying to support the various incarnations of SQL, using
Lucene for searching might be a better approach.

11 463620 Ch08.qxd 10/28/03 8:48 AM Page 164

165

This chapter looks at how mundane artifacts such as configuration files can be
autogenerated using XDoclet to add attributes to your source code. This takes
a lot of the hard work out of repetitive tasks and ensures that these artifacts are
kept in sync with your ever-changing code base.

Introducing XDoclet

XDoclet is a free Open Source tool for code generation and attribute oriented
programming (not to be confused with aspect oriented programming). It’s
available from http://xdoclet.sf.net/.

XDoclet has two facets:

■■ Generates any kind of source code or any other kind of file — usually
code or configuration files that do not necessarily need to be written by
hand. You can use it to generate source code from other source code or
from other external resources such as a database. For example, you can
generate remote interfaces for EJB components as well as ejb-jar.xml
deployment descriptor files for EJB applications.

■■ Drives the code-generation process through the use of its Attributed Ori-
ented Programming facilities. This means that to have XDoclet generate all
the artifacts of an EJB component, such as remote and local interfaces as

Generating Configuration
Files with XDoclet

C H A P T E R

9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 165

well as the deployment descriptor, you must place attributes on the
desired classes and methods that are relevant to the artifacts you want to
generate. Those attributes act as metadata for describing the necessary
information that relates to those classes and methods. XDoclet can then
use this metadata to accurately generate deployment descriptors, other
code, configuration files, or just about anything else that can be automat-
ically generated but that you’ve previously done by hand.

XDoclet was originally called EJBDoclet because it was created to tackle the
tough issue of generating EJB artifacts. Later, it was generalized to handle any
code-generation task, but it’s still very popular among EJB developers. This
chapter does not discuss the EJB generation features of XDoclet, but rather
focuses on basic concepts of XDoclet and how it can be used for generating
Hibernate’s configuration files.

Understanding Attribute Oriented
Programming with XDoclet

In Chapter 5, we learn that Hibernate uses XML configuration files to store the
object-relational mapping information. For the ContactInfo class we develop
in Chapter 5, we first create by hand a mapping file like this:

<?xml version=”1.0”?>

<!DOCTYPE hibernate-mapping PUBLIC

“-//Hibernate/Hibernate Mapping DTD//EN”

“http://hibernate.sourceforge.net/hibernate-mapping.dtd”>

<hibernate-mapping>

<class name=”contacts.ContactInfo” table=”CONTACTS”>

<id name=”id” column=”PK” >

<generator class=”vm.long”>

</generator>

</id>

<property name=”firstName” column=”FNAME” length=”30”/>

<property name=”lastName” column=”LNAME” length=”50”/>

<component name=”phone”>

<property name=”areaCode”

column=”PHONE_AREA_CODE” length=”3”/>

<property name=”countryCode”

column=”PHONE_COUNTRY_CODE” length=”5”/>

<property name=”number” column=”PHONE_NUMBER” length=”4”/>

</component>

</class>

</hibernate-mapping>

166 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 166

It’s obvious that this file is human readable and easily understandable, but,
in the long run, it becomes harder to keep this file updated with all the changes
and refactorings during development. That’s where XDoclet comes to the res-
cue. Instead of keeping this file up to date by hand, we use XDoclet and a set
of @hibernate tags right in the source code of the ContactInfo class. We use the
@hibernate.class tag to define the mapping for this class like this:

/**

* @hibernate.class table=”CONTACTS”

*/

public class ContactInfo {

This tag serves two purposes. Primarily, it’s used to drive the code-generation
process. The presence of the @hibernate.class tag tells XDoclet to generate the
corresponding ContactInfo.hbm.xml file for this class. The tag is also used
for putting extra metadata on the class. The table parameter tells XDoclet about
the table that this class maps to. Many class-level tags (such as @hibernate.class
in the case of a Hibernate persistable class, or @ejb.bean in the case of an EJB
bean) act as markers that drive the code-generation process. They tell XDoclet
that it should generate some artifact. Without these “driver” tags, all other
XDoclet tags relating to hibernate (@hibernate.*) would be ignored in this file.

For a property like firstName, we put the @hibernate.property tag on the
getFirstName() method:

/**

* @hibernate.property column=”FNAME” length=”30”

*/

public String getFirstName() {

As you can guess, each of these attributes maps to one of the XML elements
that we hand-code in Chapter 5. Here, @hibernate.property is used by XDoclet
to generate a <property/> element in the mapping file.

Finally, @hibernate.id and @hibernate.component define the property as an
ID and component, respectively, like this:

/**

* @hibernate.id column=”PK” generator-class=”vm.long”

*/

public long getId() {

...

/**

* @hibernate.component

*/

public PhoneNumber getPhone() {

Generating Configuration Files with XDoclet 167

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 167

Note that with this technique we don’t have to supply the class attribute of
the <component/> element, for example. XDoclet extracts the fully qualified
class name from the return type of the getPhone() method.

TI P As you can see, you can use attributes instead of marker interfaces. One
of the famous marker interfaces of Java is java.io.Serializable. A class
implementing this marker interface is considered serializable by Java’s IO
framework. A compile time code-generation tool such as XDoclet instead relies
on @tags to mark classes. The next version of JDK, version 1.5, will have built-in
runtime attributes support. Like XDoclet, you will be able to mark code with
attributes and add metadata to them, and those attributes will be easily
accessible in runtime via a simple API. This does not mean that XDoclet will
become obsolete when Java 1.5 comes out because the code and configuration
generation is still incredibly important.

Understanding the Syntax of Attributes
XDoclet attributes are normal Javadoc tags. They should be contained, /** and
/, and they start with an @ sign in front of them. A common error is to use /
instead of /**, which is invalid Javadoc format; as such, XDoclet doesn’t
recognize them. The following code won’t generate anything, because the
comment block doesn’t start with /**.

/*

* @hibernate.class table=”CONTACTS”

*/

public class ContactInfo {

Almost all attributes adhere to @<namespace>.<tag> convention. Name-
spaces serve only as a grouping facility and prevent any name collision
between attributes defined by different parties. It’s also possible to use the
@<namespace>:<tag> syntax, though this form is deprecated.

Attribute parameters come right after the @tag definition. These formats are
valid:

/**

* @namespace.tag param1=”value1” param2=”value2”

*/

You can break parameters into lines too, but don’t forget the * sign at the
start of each line:

/**

* @namespace.tag param1=”value1”

168 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 168

* param2=”value2”

*/

If an attribute supports only one parameter (unlike @hibernate.class that
supports many parameters, such as table and proxy), you can skip writing the
parameter name and write the value of the parameter right after the @tag
definition:

/**

* @namespace.tag “value1”

*/

And even this syntax is valid, provided that the value doesn’t have any
blank characters in it:

/**

* @namespace.tag value1

*/

If a parameter value has a quote in it, you should escape it:

/**

* @namespace.tag param=”the value is \”bla\””

*/

Just like methods, constructors, and fields, XDoclet tags are inherited by
subclasses. If you put a @hibernate.class tag on a base class, all subclasses will
also inherit that tag, as well as its parameters. This provides a good way to
define common metadata in a base class, instead of duplicating attribute val-
ues in all subclasses. For example, if you have an abstract BaseEntityObject EJB
that all the entity beans of the system extend from, you can simply put a
@ejb.bean attribute on the header of BaseEntityObject, and all subclasses auto-
matically inherit it. They don’t have to define the tag again to be recognized by
XDoclet as EJB classes. Thus, the “driver” attribute is no longer needed
directly but is instead picked up from superclasses.

Attribute parameters tags are also inherited, but can be overridden. So a
Person class is defined like this:

/**

* @hibernate.class table=”PERSONS” mutable=”false”

*/

public class Person {

You may have an Employee class derived from it that should be stored in an
EMPLOYEES table instead of the PERSONS table defined in the Person class.
You can override the table parameter like this:

Generating Configuration Files with XDoclet 169

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 169

/**

* @hibernate.class table=”EMPLOYEES”

*/

public class Personnel extends Person {

Note that the rest of the parameters are automatically inherited. The mutable
parameter of Person is inherited by Personnel, even though the table parameter
was overridden and its value was changed. You can use this approach to
remove @tag duplication from the code and put common parameters on super-
classes.

It’s worth mentioning that some third-party tools and plugins exist that pro-
vide visual editing of XDoclet tags. Some of them are IDE plugins that provide
smart autocompletion and validation for any XDoclet module. You can find an
always up-to-date list of these tools on the XDoclet Web site.

Running XDoclet
XDoclet is typically executed from an Ant build script. For our sample appli-
cation, we create a simple Ant build.xml file like this:

<project name=”contacts” default=”all”>

<property name=”src.java” location=”src/java”/>

<property name=”build.dir” location=”build”/>

<property name=”build.java” location=”build/java”/>

<path id=”classpath.build”>

<fileset dir=”lib/runtime”/>

<fileset dir=”lib/build”/>

</path>

<path id=”classpath.runtime”>

<fileset dir=”lib/runtime”/>

</path>

<target name=”java” description=”Compile Java”>

<mkdir dir=”${build.java}”/>

<javac srcdir=”${src.java}”

destdir=”${build.java}”

classpathref=”classpath.build”

debug=”true”/>

<copy todir=”${build.java}”>

<fileset dir=”${src.java}”>

<exclude name=”**/*.java”/>

</fileset>

</copy>

</target>

170 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 170

<target name=”config” depends=”java”

description=”Generate hbm files”>

<taskdef name=”hibernatedoclet” classpathref=”classpath.build”

classname=”xdoclet.modules.hibernate.HibernateDocletTask”/>

<hibernatedoclet destDir=”${build.java}”>

<fileset dir=”${src.java}”>

<include name=”**/*.java”/>

</fileset>

<hibernate version=”2.0”/>

</hibernatedoclet>

<copy todir=”${build.java}”>

<fileset dir=”${src.java}” includes=”**/*.xml”/>

</copy>

</target>

<target name=”all” depends=”clean,config”/>

<target name=”clean” description=”Clean up built files”>

<delete dir=”${build.dir}”/>

</target>

</project>

NOTE This book does not go into the details of Ant. For further reading, see
Java Development with Ant, by Erik Hatcher, (Greenwich, Conn.: Manning
Publications Company, 2002).

The two main targets of this build script are java and config targets. The first
one compiles all java files, and the second one runs XDoclet to generate the
Hibernate mapping files. When we run Ant, it runs the default target, which is
the all target, but because this target depends on clean and config targets first,
those targets are run. The config target itself depends on the java target, so that
before creating the XML mapping files, all sources are compiled.

XDoclet is configured as shown here:

<taskdef name=”hibernatedoclet” classpathref=”classpath.build”

classname=”xdoclet.modules.hibernate.HibernateDocletTask”/>

<hibernatedoclet destDir=”${build.java}”>

<fileset dir=”${src.java}”>

<include name=”**/*.java”/>

</fileset>

<hibernate version=”2.0”/>

</hibernatedoclet>

The taskdef tag introduces the hibernatedoclet task to Ant. Ant comes with
several built-in tasks such as javac, copy, and mkdir. XDoclet is a separate
standalone product with its own Ant tasks, so we need to introduce it to Ant.

Generating Configuration Files with XDoclet 171

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 171

Notice the use of the xdoclet.modules.hibernate.HibernateDocletTask class
in the taskdef. XDoclet has various tasks for different jobs. HibernateDoclet-
Task adds the functionality of generating Hibernate artifacts to XDoclet.
Various other tasks also exist (for example, EjbDoclet for generating many
different EJB artifacts).

The classpathref attribute defines the classpath of the task. The classpath is
where Ant looks to find the specified task class with all its dependencies. For
running hibernatedoclet, we need these jar files:

contacts\lib\build\xdoclet-xjavadoc.jar

contacts\lib\build\xdoclet.jar

contacts\lib\build\xdoclet-hibernate-module.jar

The core of XDoclet is defined in the xdoclet.jar, but it also needs another
core piece of it, XJavadoc, which is bundled in the xdoclet-xjavadoc.jar.
XJavadoc is responsible for parsing java files and extracting the @tags from
them. XDoclet uses what XJavadoc produces. As we mentioned, XDoclet has
support for generating many different things. For each of these distinct jobs, an
XDoclet module exists. For this application, we must use XDoclet’s Hibernate
module, so we add xdoclet-hibernate-module.jar to our classpath, too.

With all these dependencies resolved, we can run XDoclet’s hibernatedoclet
task by putting a <hibernatedoclet/> element in. The fileset-nested element of
hibernatedoclet tells it where the source files are and which of them should be
analyzed by XDoclet, which is all of the java files underneath the src/java
directory. Finally, <hibernate version=”2.0”/> runs the hibernate subtask
of the hibernatedoclet task. Each of the XDoclet tasks may have many subtasks.
hibernatedoclet has only a single <hibernate/> subtask, but the ejbdoclet
task, for example, has many subtasks such as <remoteinterface/> and
<deploymentdescriptor/>. Both tasks and subtasks define some configura-
tion properties. The version property of the <hibernate/> subtask tells it to
generate Hibernate version 2.0 mapping files.

Now we are ready to run Ant. By running it from the console, we get an out-
put like this:

C:\contacts>ant

Buildfile: build.xml

clean:

java:

[mkdir] Created dir: C:\contacts\build\java

[javac] Compiling 7 source files to C:\contacts\build\java

config:

172 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 172

[hibernatedoclet] [INFO] start - -Running <hibernate/>

[hibernatedoclet] Generating mapping file for contacts.ContactInfo.

[hibernatedoclet] contacts.ContactInfo

all:

BUILD SUCCESSFUL

All targets are executed one after each other based on the dependency of tar-
gets. The config target is also run, which runs the hibernatedoclet task and its
<hibernate/> subtask that generates the mapping files for all of our persis-
tent classes marked with @hibernate tags.

It’s worth noting that running XDoclet from Ant is not the only way of
running it, but it’s the preferred way of doing it. An automated build process
with Ant provides Continuous Integration for the application.

Martin Fowler popularized the term Continuous Integration, “an automated
basis on which the application is built and tested automatically and periodi-
cally to catch any bugs or broken tests earlier.”

Adding XDoclet to the build process adds another step to the Continuous
Integration phase. By running XDoclet as a part of the build, we produce
up-to-date artifacts from the XDoclet metadata. If an attribute is misconfig-
ured or outdated because of a source-code change, the next run of the build
will catch it.

Using Advanced Hibernate OR Mapping with XDoclet
In the previous parts of this chapter, we learned how to use basic @hibernate
tags such as @hibernate.class and @hibernate.property. We also learned how to
run XDoclet from within Ant. Now we will learn how to use XDoclet to define
the object-relational mapping for Hibernate relations and joined subclasses.

In Chapter 5, we create two classes in addition to ContactInfo: Folder and
OwnedFolder. Folder is a persistable object that has a unidirectional one-to-
many aggregation to nested Folder objects. It also has a many-to-many associ-
ation with contained ContactInfo objects. OwnedFolder derives from it, and
this hierarchy is mapped to a database with a table-per-class-hierarchy strat-
egy. The Folder class itself is annotated like this:

/**

* @hibernate.class table=”FOLDERS” discriminator-value=”Normal”

* @hibernate.discriminator column=”TYPE”

*/

public class Folder {

Generating Configuration Files with XDoclet 173

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 173

Most @hibernate tags map directly to elements with corresponding names
in the mapping file. From the previous attributes, this piece of XML is gener-
ated by XDoclet:

<hibernate-mapping>

<class

name=”contacts.Folder”

table=”FOLDERS”

dynamic-update=”false”

discriminator-value=”Normal”

>

<discriminator

column=”TYPE”

type=”string”

/>

It’s roughly the same mapping file that we create in Chapter 5 by hand. In
this case, the formatting is a bit different and XDoclet adds some default
values for some attributes.

OwnedFolder is annotated with the following tags:

/**

* @hibernate.subclass discriminator-value=”Owned”

*/

public class OwnedFolder extends Folder {

Here again, the @hibernate.subclass tag maps directly to the <subclass>
element of the mapping file and the discriminator-value parameter defines the
value of its discriminator-value attribute.

All primitive properties of these two classes and their ID fields are also
defined by using the @hibernate.property and @hibernate.id attribute like
ContactInfo.

The mapping metadata for folders property is put on the getFolders()
method:

/**

* @hibernate.set cascade=”all” lazy=”true”

* @hibernate.collection-one-to-many class=”contacts.Folder”

* @hibernate.collection-key column=”PARENTFOLDER_PK”

*/

public Set getFolders() {

return folders;

}

These attributes and their parameters all map directly to the same elements
that we hand-code in Chapter 5. Here is what XDoclet generates from these
tags:

174 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 174

<set

name=”folders”

lazy=”true”

inverse=”false”

cascade=”all”

>

<key

column=”PARENTFOLDER_PK”

/>

<one-to-many

class=”contacts.Folder”

/>

</set>

The mapping metadata for the contacts many-to-many association is
defined as follows:

/**

* @hibernate.set table=”CONTACTS_FOLDER_REL”

* cascade=”save-update” lazy=”true”

* @hibernate.collection-many-to-many class=”contacts.ContactInfo”

* column=”CONTACT_PK” not-null=”false”

* @hibernate.collection-key column=”PARENFOLDERS_PK”

*/

public List getContacts() {

return contacts;

}

Again, thanks to the human readable form of the Hibernate mapping files,
these tags translate roughly to the same readable XML elements.

Using XDoclet for Generating More
Sophisticated Artifacts
Not all XML files are easily readable like Hibernate mapping files. In case of an
ejb-jar.xml, one @ejb tag might map to many different XML elements. As
an example, suppose we have an Account EJB CMP bean. By putting an
@ejb.bean tag, we add some EJB metadata to it:

/**

* @ejb.bean

* name=”Account”

* jndi-name=”ejb/bank/Account”

*/

public abstract class AccountBean implements EntityBean {

Generating Configuration Files with XDoclet 175

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 175

Now the interesting thing is how the single @ejb.bean tag of AccountBean
generates a multitude of elements in the ejb-jar.xml file:

<entity >

<ejb-name>Account</ejb-name>

<home>test.interfaces.AccountHome</home>

<remote>test.interfaces.Account</remote>

<local-home>test.interfaces.AccountLocalHome</local-home>

<local>test.interfaces.AccountLocal</local>

<ejb-class>test.ejb.AccountCMP</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>test.interfaces.AccountPK</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>Account</abstract-schema-name>

As you can see XDoclet generates a lot of other elements by applying some
defaults or by extracting the appropriate information from the source code of
the bean itself.

Now, suppose we have a CustomerBean that should have an EJB reference
to Account. CustomerBean and the ejb-ref are defined like this:

/**

* @ejb.bean

* name=”Customer”

* jndi-name=”bank/Customer”

* @ejb.ejb-ref

* ejb-name=”Account”

* ref-name=”ejb/bank/Account”

*/

public abstract class CustomerBean implements EntityBean {

The @ejb.ejb-ref very smartly discovers the other end of the ejb reference
and generates the following XML as the result:

<ejb-ref >

<ejb-ref-name>ejb/bank/Account</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>test.interfaces.AccountHome</home>

<remote>test.interfaces.Account</remote>

<ejb-link>Account</ejb-link>

</ejb-ref>

Notice how XDoclet has discovered the other end of the ejb-ref from the ejb-
name parameter of @ejb.ejb-ref. XDoclet here has searched for all source codes

176 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 176

that have an @ejb.bean declaration with a name parameter of “Account.” It
then extracted the rest of the metadata such as the home and remote interface
name of the referenced EJB from the metadata defined in the referenced
Account class. If we were to provide this information by specifying some
home, remote, or ejb-link parameters of @ejb.ejb-ref, we would have to dupli-
cate the metadata (which is basically in the metadata of the referenced class
itself).

XDoclet can be not only used for generating XML files but Java or JSP source
codes, too. In the case of EJB, XDoclet is also used for generating the remote
and home interface source files from the bean implementation class and the
corresponding @ejb.bean and other attributes. Consider the following Stateful
Session Bean implementation class:

package test.ejb;

/**

* @ejb.bean name=”Stateful” type=”Stateful”

*/

public abstract class StatefulBean implements javax.ejb.SessionBean {

private String x;

/**

* @ejb.interface-method

*/

public String foobar() {

return “Foobar”;

}

/**

* @ejb.create-method

*/

public void ejbCreateWithParam(String x) {

this.x = x;

}

/**

* @ejb.create-method

*/

public void ejbCreate(String x) {

this.x = x;

}

}

Each enterprise java bean has a home and remote interface. Without XDoclet,
we would have to write those classes by hand, but with XDoclet we can use the
<homeinterface/> and <remoteinterface/> subtasks of the <ejbdoclet/> XDoclet

Generating Configuration Files with XDoclet 177

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 177

task to generate them for us. This is the generated home interface for Stateful-
Bean:

/*

* Generated by XDoclet - Do not edit!

*/

package test.interfaces;

/**

* Home interface for Stateful.

* @xdoclet-generated at 3-06-03

* @author XDoclet

* @version 1.2b3-dev

*/

public interface StatefulHome

extends javax.ejb.EJBHome

{

public static final String COMP_NAME=”java:comp/env/ejb/Stateful”;

public static final String JNDI_NAME=”Stateful”;

public test.interfaces.Stateful createWithParam(java.lang.String x)

throws javax.ejb.CreateException,java.rmi.RemoteException;

public test.interfaces.Stateful create(java.lang.String x)

throws javax.ejb.CreateException,java.rmi.RemoteException;

}

A StatefulHome interface is generated. Notice how the two EJB create()
methods are generated based on their XDoclet annotated counterparts defined
in the StatefulBean class.

Here is the remote interface generated for StatefulBean:

/*

* Generated by XDoclet - Do not edit!

*/

package test.interfaces;

/**

* Remote interface for Stateful.

* @xdoclet-generated at 3-06-03

* @author XDoclet

* @version 1.2b3-dev

*/

public interface Stateful

extends javax.ejb.EJBObject

{

public java.lang.String foobar()

throws java.rmi.RemoteException;

}

178 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 178

Again, notice that XDoclet generated the definition of the foobar() remote
method in this interface, based on the presence of an @ejb.remote-interface
attribute on the foobar() method of StatefulBean class.

Understanding XDoclet Tasks and Subtasks
XDoclet comes with a rich set of built-in tasks and subtasks. Needless to say,
many more of them are available from other independent sources and com-
mercial vendors providing XDoclet support for their products.

Earlier in this chapter, we briefly discussed two of the most popular XDoclet
tasks for generating Hibenate and EJB-related artifacts. Here we will provide a
matrix of some built-in and popular XDoclet tasks and their subtasks, with a
brief explanation for each.

EJBDoclet

Defined in class xdoclet.modules.ejb.EjbDocletTask, this task is a big wrapper
for all EJB-related subtasks of XDoclet. All standard attributes are in @ejb
namespace. It has the following standard subtasks:

SUBTASK GENERATES . . .

dao Abstract Data Access Object interfaces

deploymentdescriptor ejb-jar.xml

entitybmp BMP subclass derived from the abstract bean
implementation class, useful for smooth
migration from EJB 1.1 to EJB 2.0

entitycmp CMP subclass derived from the abstract bean
implementation class, useful for smooth
migration from EJB 1.1 to EJB 2.0

entitypk Primary key classes

homeinterface Home interfaces

localhomeinterface EJB 2.x local home interfaces

localinterface EJB 2.x local interfaces

remoteinterface Remote interfaces

session Session bean classes derived from the abstract
bean implementation classes, useful for inject-
ing code to a bean without touching the bean
implementation itself

utilobject Utility objects for home interface lookups
from JNDI server

valueobject Value object classes

Generating Configuration Files with XDoclet 179

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 179

There are also many vendor-specific EJB subtasks for various application
servers such BEA Weblogic, JBoss, Orion, Sybase, SunOne, Resin, Jonas, Oracle
OC4J, Borlans Enterprise Server, Pramati, Macromedia JRun, and who knows
what other application servers out there.

WebDoclet

Defined in class xdoclet.modules.web.WebDocletTask, this task is a big wrap-
per for all Web-tier-related subtasks of XDoclet. It has the following standard
subtasks:

SUBTASK GENERATES . . .

jsptaglib taglib.tld files for JSP tag libraries, from
@jsp tags

strutsconfig Jakarta Struts struts-config.xml configu-
ration file, from @struts tags

strutsform Struts Form classes for EJBs, from
@struts.form tag

strutsvalidationxml Jakarta Struts validation.xml configura-
tion file, from @struts:validator

webxml web.xml, from @web tags

Like EJBDoclet, WebDoclet has many application-server-specific subtasks.

JMXDoclet

Defined in class xdoclet.modules.jmx.JMXDocletTask, this task is a big wrap-
per for all JMX-related subtasks of XDoclet. JMX stands for Java Management
eXtensions and is a standard for building manageable components. All stan-
dard attributes are in @jmx namespace. It has the following standard subtasks:

SUBTASK GENERATES . . .

mlet mbeans.mlet files for JMX beans

mbeaninterface MBean interfaces for MBeans

JDODoclet

Defined in class xdoclet.modules.jdo.JdoDocletTask, this task is a big wrapper
for all JDO-related subtasks of XDoclet. JDO stands for Java Data Objects and
is a persistence standard. All standard attributes are in @jdo namespace. It has
the following standard subtasks:

180 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 180

SUBTASK GENERATES . . .

jdometadata .jdo files for persistent classes

Many other subtasks are also provided for vendor-specific extensions of
many JDO vendors.

HibernateDoclet

Defined in class xdoclet.modules.hibernate.HibernateDocletTask, this task
only has a single <hibernate> subtask that is responsible for generating
hbm.xml mapping files for persistent classes. All attributes are in @hibernate
namespace.

Using XDoclet Effectively
Like any technology, using XDoclet also has some pros and cons. Overusing it
may cause more damage than good, and misusing it can make the program
harder to develop rather than easier to develop. Here we will provide some
guidelines for proper use of XDoclet.

First of all, we divide the @attributes into two kinds: development-oriented
and deployment-oriented. There’s no concrete rule for deciding whether an
@attribute or some of its parameters are among the first set or the second. If
you feel that an @attribute belongs to the code and the @attribute adds some
meta-data that nicely annotates the source code itself, it’s a development-
oriented @attribute.

@hibernate.property is an example of a development-oriented attribute. It
nicely adds some mapping metadata to properties of persistent classes. The
definition of the property and the mapping metadata logically belong to the
source code. @ejb.transaction attribute is another development-oriented
attribute. The developer in charge of that piece of code has counted on the
method belonging to a specific transaction boundary. If we extract this trans-
action metadata from source code and let any third party modify it, we’re
changing all the assumptions that the developer of the original code has
applied toward the transactional setting of a method.

Some @attributes or some parameters of some @attributes are deployment
oriented. They define some of the metadata needed only during deployment
of the software. Such metadata is mostly dependent on where and how the
application is deployed. The JNDI name of an EJB and database schema name
of a Hibernate persistent class are such deployment-focused metadata. The
same EJBs are typically deployed with different jndi-names on the servers of a
cluster. The database schema name of a Hibernate class is also dependent on
the deployer’s choice of which database to use for storing the data.

Generating Configuration Files with XDoclet 181

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 181

We should avoid putting deployment-oriented metadata in source code;
otherwise, we have to change the @attributes of the code each time we want to
deploy to a new environment. The question is how can we generate an
ejb-jar.xml or Hibernate mapping file from development-time attributes
and yet include those rare deployment-time metadata in the same generated
file?

XDoclet provides two mechanisms for extracting these metadata from
source code and putting them in a place other than the source code. We can
either use Ant properties in attribute values or use merge files.

As an example for using Ant properties for defining deployment-time meta-
data, consider the database schema name of a Hibernate class. We can define it
by using the schema parameter of @hibernate.class attribute like this:

/**

* @hibernate.class table=”FOLDERS” discriminator-value=”Normal”

* schema=”contactsdb”

* @hibernate.discriminator column=”TYPE” length=”10”

*/

public class Folder {

But we’re in trouble if a client wants to deploy the application on a database
schema other than contactsdb. We can extract the value to an Ant property
defined in the build.xml file and reference it in this tag like this:

/**

* @hibernate.class table=”FOLDERS” discriminator-value=”Normal”

* schema=”${schemaname}”

* @hibernate.discriminator column=”TYPE” length=”10”

*/

public class Folder {

When building the application, XDoclet will substitute the ${schemaname}
with the value of an Ant property with the same name. The property is defined
like this in the build.xml file:

<property name=”schemaname” value=”contactsdb”/>

In some other cases, we can use XDoclet merge points or merge files. Merge
files are like plug points in the template file used for generating stuff. Each
XDoclet subtask defines a set of merge points. The list of these merge files is
available in the documentation of each subtask.

Each EJB component can have a set of environment variables defined for it.
The values of these variables are defined on the JNDI tree of the application
server. They are clearly deployment-oriented things. So instead of putting a
bunch of @ejb:env-entry tags in the source code of a bean, we can put them in

182 Chapter 9

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 182

a separate merge file, which is later merged into the generated ejb-jar.xml
file during build. By looking at the documentation of <deployment
descriptor> subtask of <ejbdoclet>, we find that if we create a file named
ejb-env-entries-EJBNAME.xmlwe can instruct XDoclet to merge this file
into the generated ejb-jar.xml file. Here is the definition of an EJB envi-
ronment variable for the StatefulBean class:

[/test/ejb-env-entries-Stateful.xml]

<env-entry>

<env-entry-name>backup-server-name</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>hercules</env-entry-value>

</env-entry>

Using these two simple techniques, we can move deployment-time meta-
data out of the source code.

Summary

In this chapter, we first got familiar with the Attribute Oriented Programming
concept and how this concept can by used by XDoclet to perform code gener-
ation and add metadata to source code.

We then converted the ContactInfo class from the sample application of
Chapter 5 to use @hibernate attributes instead of hand-coding the mapping
file. During this conversion, we learned how to use XDoclet attributes. We also
learned the correct syntax of XDoclet attributes and their inheritance behavior.
We then learned how to run XDoclet from within Ant to generate the Hiber-
nate mapping files.

Then we moved on to converting more advanced Hibernate mapping, such
as relations and joined subclasses to @hibernate tags.

We also learned how to use XDoclet to generate more sophisticated EJB arti-
facts such as EJB deployment descriptors and home and remote interfaces. We
learned how XDoclet generates a lot of things from a very small number of
@ejb tags and how it can cleverly extract metadata just by looking at the source
code.

Then we had an overview of most popular XDoclet tasks and subtasks.
The chapter was wrapped up with some guidelines for using XDoclet more

effectively. We distinguished between development-time and deployment-
time metadata and learned how to use Ant properties and merge files to sepa-
rate and merge deployment-time metadata into generated artifacts.

Generating Configuration Files with XDoclet 183

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 183

12 463620 Ch09.qxd 10/28/03 8:51 AM Page 184

185

This chapter examines some tools and techniques that will be useful in your
development projects. We use PetSoar as an example project and explain some
of the lessons we have learned along the way.

Communication is one of the key attributes of any successful project. With-
out good interteam communication, a project is sure to run into trouble during
its lifetime. It is often overlooked that communication goes a lot further than
just talking to others on your team! We also look at some of the different types
of communication involved in a modern development project and look specif-
ically at how to manage communication to achieve your development goals.

Tools are another key aspect of a good development project. A good devel-
oper should never use inadequate tools! We provide a quick catalog of the
tools used in our project. We explain where each tool is most useful, as well as
how to integrate tools to increase their overall value.

Exploring PetSoar Development

The PetSoar project was developed by four developers on four continents,
each in totally different time zones. We have extracted a few self-contained
“lessons” from our work, which are described in this section.

Communication and Tools

C H A P T E R

10

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 185

Two things are worth noting:

■■ Our development has been distributed, so these “lessons” may or may
not apply in your environment.

■■ All the authors are employed to write software commercially and are
very active in the Open Source world. This means that our develop-
ment reflects a broad range of experience and a merging of “models.”

No process is ideal for everyone. Many teams choose no process at all, and
some choose to create their own; some adapt another one, while others follow
an existing one religiously by the book.

We do not discuss any of the processes we used in detail. That subject forms
a whole library of books itself. Whichever process you decide to use, this chap-
ter lists some important tips that suit most processes.

Companies are willing to invest huge amounts of money in software devel-
opment projects. However, often under the pressures of a project timeline,
investing in “development speed” is neglected.

How do you invest in development speed? Learn to use your tools, espe-
cially your IDE, intimately. Considering that you use the IDE for most of your
development day, you should train yourself to be an IDE ninja. There’s no
excuse not to be.

You should be continually looking for ways to improve development speed.
In the area of source-exploration time, consider the following:

■■ Learn the shortcut keys and techniques to navigate around your source
code effectively. You should be able to search or follow links to items or
usages of items as quickly as you can think about it.

■■ If you find yourself doing something repeatedly in your IDE, set up a
shortcut key. If it’s an operation not supported by the IDE, consider
writing a macro or plugin to make it easier.

■■ Look around for seamless integrations between your IDE and source
code control system. Having to constantly switch between the two as
you want to edit code is frustrating.

To reduce the time required to build your application, consider the following:

■■ If your build system is needlessly repeating work at each run, try mak-
ing your build more incremental. For example, ensure that it recompiles
or regenerates only code that has been modified.

■■ If the Java compiler is taking too long, try using Jikes. This is an Open
Source alternative to javac that is many times faster. It is available from
http://ibm.com/developerworks/oss/jikes/.

■■ Use finer-grained build targets and choose the correct one depending
on your current task. For example, you do not have to regenerate the
JavaDoc documentation on every build run.

186 Chapter 10

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 186

■■ Use different build steps for development and deployment. Although
you may have to package everything into a neat JAR, WAR, or EAR file
when you release the application, it is a time-consuming step while in
development. If you are merely editing a JSP, you shouldn’t have to
invoke the build system at all. A browser refresh should suffice if the
Web application is run directly from your source directory.

In the area of testing time, consider the following:

■■ If your integrated development environment (IDE) has built-in JUnit
support, make use of it. As subtle as it sounds, ensuring that there’s a
key-mapping available that can compile and run your unit tests can
give you those extra few seconds — important when you’re running
tests many times per minute.

■■ If a few tests are much slower than the rest, try optimizing them. Fail-
ing that, break the slow ones into a separate test suite that isn’t run as
regularly. You should, however, ensure that all tests are run before
checking in any code.

■■ If all your tests are running slowly, determine if anything can be done
to optimize them. For example, if a database connection is being re-
established for every unit test, it may make more sense to share a single
connection across all tests.

In the area of application startup time, consider the following:

■■ If the application runs in an application server, try starting the server
directly from the IDE to minimize the amount of time you spend
switching between applications. Most application servers are written
in pure Java, so it’s usually just a case of placing all the necessary
JARs in the classpath and invoking the correct startup class. This
makes it very easy to use the debugger because the IDE is managing
the JVM.

■■ If the application server itself has a slow start-up time, investigate
whether it has a hot-deploy capability, allowing you to start it once
but to redeploy the application rapidly. You may have to modify the
JVM arguments that start the server if you want to use the debugger
from your IDE, as it will have to connect to the JVM remotely. Consult
the documentation for your IDE and server to determine how to do
this.

■■ If your application takes too long to start because it’s so big, see if you
can break it into smaller applications that can be started in isolation.

In teams that practice TDD (explained in Chapter 13), it is common to build
and run your tests many times a minute.

Communication and Tools 187

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 187

Managing Imperfect Communication

One of the greatest contributors to successful development projects is good
communication.

In this section, we look at the following:

■■ The different mediums in which developers can communicate

■■ The source code as a valuable communications tool

■■ The training benefits of good communications

Communicating in Every Way
Almost everything we do as developers communicates something to someone,
whether it’s writing a piece of source code, sending an e-mail, or writing a Web
page. Table 10.1 shows a classified list of some of the communication methods
you may encounter as a developer.

As an example, in the development of PetSoar and in the authoring of this
book, we used every method of communication in Table 10.1 — except “over
the cubicle discussions”! (These are a bit difficult when the authors are in Aus-
tralia, the U.S., England, and Iran.)

One thing to bear in mind when you’re communicating with other develop-
ers on your team is the permanence of the communication. Your “message”
should be adjusted to take this into account. For example, a phone conversa-
tion has no permanent record, whereas a Web page is designed to be perma-
nent. Often, these nonpermanent communication mediums generate good
ideas. Developers should always be aware of the need to record this informa-
tion in a permanent form (for example, quickly writing the minutes of a con-
ference call on a Web site). This record can save time down the road, because
there is less need to hold duplicate meetings and calls.

The general rules of clarity, conciseness, and consistency apply, regardless of
the medium you’re using. Remember, the effect of the communication is
always more important than the form of communication.

Table 10.1 Communication Methods

ONE TO ONE ONE TO MANY

Synchronous “Over the cubicle” discussions, Meetings, conference calls,
phone, instant messaging, online chat.
pair programming.

Asynchronous E-Mail Mailing lists, forums, Web
sites, documentation,
source code.

188 Chapter 10

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 188

Using Source Communication
At one time or another, every developer has been faced with a large, new code
base to understand. Or perhaps you’ve scratched your head staring at a piece
of code you wrote last week, trying to remember what it did or why you made
certain decisions. This is exactly where good source communication comes in.

Source communication is a black art. There are no hard and fast rules. People
often think their source speaks for itself and will be readable to the next devel-
oper. This is rarely the case! Of course, the opposite is also true — commenting
too heavily (yes, we’ve seen classes with comments for every line of code) runs
the risk of smothering the useful communication of the source in layers of
meaningless garbage that offer little value. Overcommenting leads to code that
is harder to change because you have twice as much to maintain.

Here are a few simple rules to help improve your team’s source communi-
cation:

■■ Always strive to write simple, understandable code — Writing readable code
is far more important than adding comments (which often get left until
the end — or left out altogether). Your code should document itself.
Also, if your code is confusing and doesn’t communicate well, that is
one of the sure signs that it needs refactoring!

■■ Add comments only where necessary — Comments describing what a class
is designed to do or why a particular design decision was made are use-
ful, but explaining how it works is a duplication of the code.

■■ Always remember that JavaDoc gets generated as HTML — Thus, you should
use the hyperlinks liberally! @see should be regularly used to link classes
and methods together. These techniques provide a great navigation tool
to those reading or learning from your source documentation.

■■ Use your unit tests as API examples — One of the great benefits of having
a comprehensive unit test suite is that you instantly get usage examples
for each class. Make sure you use these! It’s also a self-referential sanity
check. If your unit tests do not provide good usage examples, the tests
themselves probably aren’t comprehensive. Your tests should describe
what your code is meant to do, as well as how to use the API. The test
names should also reflect this. If you do this religiously, you can find
tools such as TestDox that autogenerate documentation from test names
that can have surprisingly useful output. For more information, see
http://agiledox.sourceforge.net/.

■■ Use an IDE that allows you to navigate the source as if it were a hypertext
environment — Being able to navigate back and forth through a code
base is brilliantly useful when you are presented with a new project.
(See the section, “Exploring Our Toolbox” later in this chapter for our
recommendations).

Communication and Tools 189

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 189

Using Communication as a Learning Tool
Development teams aren’t made up of identical drones, each with the same
skills and knowledge. Different developers have different sets of refined skills.
Many teams are split into junior and senior developers, while other teams
don’t make that distinction. Either way, everyone is good at different things
and knows different information (whether technical, domain, or application
specific). There is rarely one person on your team who knows everything
about the application. Therefore, some members of your team will be unaware
of various pieces of information. People leave. People join. Where does the
knowledge go?

The challenge is to use communication as a learning tool to distribute
knowledge around your development team. Communication methods can
help teach new developers.

One of the aims of your development team should be to increase collec-
tive knowledge by communicating with each other and recording use-
ful information for people who may join in the future (or those with bad
memories).

190 Chapter 10

THE “HIT BY A TRUCK” TEST

Look at a your team closely. What would happen if someone were hit by a truck
tomorrow? What vital skills and information would be lost? Would the team be
able to continue development? Would this person be replaceable? Consider this
for each member of the team.

It’s not meant to be as morbid as it sounds. Frequently asking yourself this
question can show you where the high-risk zones in your project are. If you
identify a member of your team whom the project could not function without,
it’s a tell-tale sign of where communication needs to be focused.

In practice, few developers are hit by trucks. However, ensuring that vital
development knowledge is distributed has many advantages:

◆ The team collectively becomes more responsible for the information.

◆ Critical decisions can be made, questioned, and enhanced by multiple
brains.

◆ Developers feel better about not attending yet another meeting, taking a
needed vacation, or even working on a new project. Taking burdens like
these off developers’ shoulders can have a dramatic positive effect on
collective morale and can often rekindle enthusiasm as they think about
new problems.

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 190

Exploring Our Toolbox

There are many good development tools out there, each with its own purpose.
Here we present a list of the tools that we used on the PetSoar project and a

brief overview of each tool. We also look at how learning to tie your tools
together can provide a great benefit to your project overall.

Remember, the best tools are by no means the most expensive tools.

Source Configuration Management — CVS
Without question, all projects should use a source-control system. If you’re not
using one, we suggest that you put this book down now and install one
instantly. There is no excuse for lost code.

A source-control system provides a complete audit trail of all changes on the
code base. This can be used for determining what was changed in a class on a
particular date or to retrieve an older version of the system.

However, the more subtle advantage of a source-control system is that it
gives confidence to the developers — confidence to introduce new code to the
system, to make a refactoring, to fix a bug in a radical way, or to delete dead
code.

As an analogy, try walking the length of a three-meter plank of wood on the
ground. It’s pretty easy, isn’t it? Now try walking along that same plank of
wood suspended from a tower block, with no safety net. The wood hasn’t
changed shape, but you’ll go much slower. The source-control system allows
you to be daring enough to walk the plank with confidence.

For source control, we used the Open Source tool CVS. It is one of the utmost
used Source Configuration Management (SCM) systems in the world. It has
the benefit that both IDEs we used have good CVS support, and there are
clients for all platforms. Incidentally, if you’re using any version of Windows,
TortoiseCVS is a fantastic way to use CVS from within Explorer. For more
information, see the following:

■■ CVS — http://www.cvshome.org/

■■ TortoiseCVS — http://www.tortoisecvs.org/

Knowledge Management — Wiki
If you haven’t used a Wiki before, you should try it. A Wiki is a group-editable
Web site that is excellent for rapidly collecting and recording knowledge

Communication and Tools 191

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 191

within a development team and providing hyperlinked paths through the
information. We use MoinMoin Wiki, which is one of the more established
Wiki systems out there. It is Open Source and written in Python, although
there is Wiki software written in all major programming languages. On
PetSoar, we used Wiki to keep schedules, manage documentation, record
chat logs and meeting minutes, and much more. For more information, see the
following:

■■ The original Wiki — http://www.wiki.org/

■■ MoinMoin — http://moin.sourceforge.net/

■■ TWiki — http://twiki.org/

Mailing List — Majordomo
Mailing lists are extremely useful for communicating to a group of people
asynchronously. We used the Open Source Majordomo package, although
there are a number of useful systems out there. For more information, see
http://www.greatcircle.com/majordomo/.

Real-time Discussion — IRC and Instant Messaging
There are many ways to conduct online discussions in real time. For our group
meetings, we used Internet Relay Chat (IRC), simply because IRC clients exist
for all platforms that the developers were using. With PetSoar, these meetings
were held online because of the distributed nature of the team. In your devel-
opment team, this would be the equivalent of a weekly meeting, so a confer-
ence room would serve the same purpose. The ideal is to have a standup
meeting in the coffee area if you have one.

For one-to-one communication, an instant messaging (IM) application (such
as Jabber, AIM, or Yahoo!) can be used. IM is very useful when developing in
tandem with someone who is not in proximity with you (physically speaking).
These clients can also be used for group discussions if there is a standard client
across your development team. Jabber is fully Open Source; however, all the
tools listed previously are freely available for use. For more information, see
the following:

■■ Jabber — http://www.jabber.org/

■■ AIM — http://www.aim.com/

■■ Yahoo — http://messenger.yahoo.com/

192 Chapter 10

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 192

IDEs — IDEA and Eclipse
IDEs are a highly contested topic, and I’m sure everyone already has his or her
favorite. The two IDEs used by our team are IDEA (commercial software from
IntelliJ) and Eclipse (Open Source from IBM). Both have excellent source
navigation and productivity features, including CVS clients. Both allowed us
to increase our development speed by developing inside the IDE (including
running all tests and debugging the application deployed in the application
server). It is important to feel comfortable with your IDE. If you don’t know
your shortcut keys, learn them. If you don’t like how it’s configured,
customize it. You spend most of your development time in your IDE, so make
it good time. For more information, see the following:

■■ Eclipse — http://www.eclipse.org/

■■ IDEA — http://www.intellij.com/

Issue Tracking and Task Management — JIRA
Keeping track of the issues that arise during a software project, both during
development and in production, is a very important task. For our issue track-
ing, we used JIRA (commercial software from Atlassian) because it was the
tool that best fit our needs. There are Open Source alternatives that you may
want to try — the most popular of which is Bugzilla, developed by the Mozilla
project.

■■ JIRA — http://www.atlassian.com/

■■ Bugzilla — http://www.mozilla.org/bugzilla/

Using Continuous Integration

Continuous Integration is the concept popularized by Martin Fowler of
Extreme Programming (XP) fame. His original article about the concept can be
found at the following address:

http://www.martinfowler.com/articles/continuousIntegration.html

We’ve already learned about the importance of a fully automated build and
test process that allows a team to build and test their software many times a
day. An automated build based on Ant is a reliable mechanism for ensuring
consistent build procedures for each of the team members. But there’s still
something that running Ant individually can’t provide: building and testing
the integrated work of the team.

Communication and Tools 193

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 193

While developing one component of a software product, the developer
responsible for that part can build and test the changes individually. However,
often in a team environment, changes made by one developer to some part of
the system break another part developed by another developer. Sometimes a
change can introduce bugs in other parts of the system. The difficulty in inte-
grating the work of a developer to the system is more severe if the integration
is not taking place very often. All developers have bad memories of bugs intro-
duced by integrating some piece of work very late into the system. We need to
run all test cases upon integrating any new work into the system; otherwise,
there’s no way to make sure that a change doesn’t break the system. Further,
we need to do it as many times as possible to reduce the scope of searching for
bugs, thus making fixing them easier and faster. This process is called continu-
ous integration. That is: integrate often and let an automated build and test
happen when integration happens.

There are two Open Source products that assist with automating continuous
integration: CruiseControl and AntHill, which you can find at the following
locations:

■■ CruiseControl — http://cruisecontrol.sourceforge.net/

■■ Anthill — http://www.urbancode.com/projects/anthill/

Both of these products essentially do the same thing: they monitor your
version-control repository for changes and then run predefined build tasks
(usually Ant targets) and send out notifications of successes or failures. These
types of builds are called event-driven builds. Event-driven builds can be very
powerful because they quickly notify the development team when things are
going wrong. Essentially, they ensure that the entire team has a sense of
responsibility for the project’s current status, not just the individual code they
“own.” In a sense, this promotes the idea that there is no code ownership, but
rather everyone shares ownership with everyone else (a strong theme in XP-
style development).

We recommend that even if you are using your IDE for most of your tasks
(such as launching unit tests), placing these tasks in your Ant build as well
allows event-driven builds to also take part in the development cycle. Without
a way to run unit tests from Ant, there is no way Anthill or CruiseControl can
notify your team when code in the repository is failing its tests.

If you choose not to use an event-driven build system, you might still want
to have all check-ins to the code repository trigger a notification e-mail to be
sent to all the developers. While this doesn’t automatically ensure that the
build continuously stays in tip-top shape, it still helps you see when someone
has updated code and gives you the opportunity to see if change has affected
anything in the overall project.

194 Chapter 10

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 194

Tying the Tools Together

Having good development tools is one thing, but you must also look at the
value that can be generated by tying your tools together. With PetSoar, we did
this in a number of ways:

■■ All of our meeting logs from IRC and IM chats were archived on our
Wiki online for future reference. Meeting minutes and action lists were
also created manually from these logs and stored on the Wiki or within
JIRA. This allows us to easily reference and search all discussions that
have occurred regarding the project, as well as see which tasks are
assigned to whom.

■■ We connected our CVS server to our mailing list via a script called
syncmail (http://syncmail.sourceforge.net). This sort of inte-
gration is fantastic for interteam communication. Anytime any of us
made a change to the source base, it was e-mailed with a log of the
change to all developers. This allows everyone to stay up to date with the
changes taking place using only his or her e-mail client. An alternative to
syncmail is CVSSpam (http://www.badgers-in-foil.co.uk
/projects/cvsspam/).

■■ The mailing list was used to develop discussions over time, the result of
which was turned into a document on the Wiki. This is a good example
of using communication media for their best purposes and recording
the useful information that results from synchronous communication.

All of the tools that your development team uses are useful by themselves,
but remember to look for the points of interconnectivity between them to
increase the communication value and their value to your project!

Summary

In this chapter, we’ve looked briefly at the importance of communication.
Building PetSoar would have been impossible without good communication
among the team members. We’ve seen that there are many forms of communi-
cation (including morning meetings, chatting to the developer sitting next to
you, documentation, source code, and online chats).

We’ve also looked at the actual tools we’ve used to get our work done and
how they relate to each other. Becoming intimate with your IDE is extremely
important, as it will help you develop faster. Using a source code control pack-
age is vital because it allows you to make changes in confidence with a safety

Communication and Tools 195

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 195

net in case anything goes wrong. Ensuring that your IDE and source control
system are seamlessly integrated will allow you to get on with writing code
without obstructions from the source control system. Your source control sys-
tem also automates some communication by notifying other team members of
changes. This in turn sparks up conversations.

Think carefully about how your tools can interact with each other, making
your days more productive and improving communication at the same time.

196 Chapter 10

13 463620 Ch10.qxd 10/28/03 8:51 AM Page 196

197

This chapter looks at some useful small utility components that can make
development simpler.

To start with, we will look at OSCache, a component that can cache portions of
JSP pages, enabling better scalability and improved performance. We’ll then
take a look at some utilities that can simplify everyday Java code. Commons Lang
is a collection of utility classes that supplement the java.lang package and Com-
mons Collections contains extensions and additions to the JDK Collections APIs.
We shall also look at Commons Logging, an adapter that provides a common
interface to many logging frameworks, such as Log4j and the java.util.logging
added in Java 1.4. Finally, we’ll look at how Commons Digester can aid in parsing
(digesting!) XML files into JavaBeans given a simple set of patterns and rules.

For each component, we explain what its aims are and give some examples
of its usage. For the complete documentation, see the Web site for each com-
ponent. These components can be downloaded from http://jakarta
.apache.org/commons/ and http://www.opensymphony.com/.

Understanding Utility Components

A utility component is small, simple, and reusable and performs a single func-
tion. Individually, each utility component isn’t large enough to warrant its
own chapter, but together they can contribute significantly to a project.

Time-Saving Tools

C H A P T E R

11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 197

While all components are supposed to be small, simple, and reusable, by
nature, utility components are quite hard to define. The border between a util-
ity component and a larger-grained component is subjective.

Rather than exploring a specific definition, let’s look at a few rules that
generally indicate a good utility component:

■■ Lightweight — Utility components are usually much smaller and sim-
pler than full-blown components. For example, Hibernate is a heavy-
weight component with a 760K JAR file including many configuration
options, whereas Commons Logging is a very lightweight component
with only a 26K JAR file including one main configuration parameter.

■■ Focused — A utility component should be designed to provide one sim-
ple, focused function. As an example, Commons Digester does one
thing and one thing only — digesting XML files into Java Beans.

■■ Flexible — Utility components should be extremely flexible and config-
urable for different situations. For example, Commons Logging is
adaptable to use many different underlying logging systems.

■■ Friendly — Everyone likes friendly people who play well with others.
The same applies to utility components. They should integrate well
with other components and continue the existing design thinking. For
example, Commons Collections builds on the design of the JDK Collec-
tions API with many new collections, but integrates well into existing
applications because it reuses many of the JDK Collections interfaces.

■■ Nonintrusive — A utility component shouldn’t change the way you have
to code and design your application. It should fit into your design
rather than make you design for it.

Understanding OSCache

Performance and scalability of an application can be greatly dependent upon
the caching strategies used within it. The Web is a request-response based
medium, which often means that subsequent requests requery the same piece
of data over and over.

OSCache is a utility component that solves this problem by caching post-
processed JSP fragments in the Web-tier. A simple example may help more
clearly explain why OSCache is so useful.

Introducing SampleNews.com
Let’s imagine a typical online news site called SampleNews.com, which con-
sists of a front page with a list of headlines updated once an hour.

198 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 198

Without caching, each time a person visits the site to read the front page, a
new request is created, which fires off some sort of server-side code, which
talks to the database to get a list of headlines, which a JSP then iterates over
and renders into HTML for the user.

Now imagine that ten people visit this site every second. That’s ten server-
side processes, ten JSPs executing, and ten database queries. The database
queries are most important, because they are generally the most resource-
intensive part of a request.

If the headlines for this site are only updated once an hour, almost every one
of these requests is a waste of resources, because each is querying and iterating
the exact same data again and again!

OSCache solves this problem simply by caching the generated HTML frag-
ment the first time a request is run. For subsequent requests, the cached por-
tion is served to the end user, thereby reducing the number of database hits.

Using the Loop Test
The loop test is a simple example that shows the benefits OSCache can pro-
vide. It is a simple loop that iterates ten million times, printing the counter
after every millionth iteration.

The code for looptest.jsp is as follows:

<%@ taglib uri=”oscache” prefix=”cache” %>

<%

long before = System.currentTimeMillis();

for (int i = 0; i < 100000000; i++) {

if (i % 10000000 == 0)

out.print(i + “
”);

}

long uncachedTime = System.currentTimeMillis() - before;

%>

Uncached time taken = <%= uncachedTime %>ms.<p>

<% before = System.currentTimeMillis(); %>

<cache:cache>

<%

for (int i = 0; i < 100000000; i++) {

if (i % 10000000 == 0)

out.print(i + “
”);

}

%>

Time-Saving Tools 199

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 199

</cache:cache>

<% long cachedTime = System.currentTimeMillis() - before; %>

Cached time taken = <%= cachedTime %>ms.<p>

Caching is <%= uncachedTime / Math.max(cachedTime, 1) %>% faster.

This JSP

■■ Imports the OSCache tag library (line 1)

■■ Loops ten million times without any caching and calculates the time
taken (lines 3 – 14)

■■ Loops ten-million times with a simple cache and calculates the time
taken (lines 16 – 29)

■■ Calculates how much faster the cached loop was than the uncached one

Here is a sample of what the results look like the first time the JSP is run:

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

Uncached time taken = 4907ms.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

Cached time taken = 4958ms.

Caching is 0% faster.

The loops each took the same amount of time! Let’s try executing it again
and see what happens:

200 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 200

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

Uncached time taken = 5037ms.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

Cached time taken = 1ms.

Caching is 5037% faster.

The second execution was much faster than the first. The first time loop-
test.jsp executes, the content between the <cache:cache> tags is executed
and cached (here stored in memory). The second time the JSP is executed, the
tag will look for the cache content, find it in memory, and return it — without
ever actually executing the loop.

This is the essence of where OSCache provides a speed improvement. As
long as a cached fragment exists, the JSP code between the cache tags is never
actually executed, thus saving time.

Also note the simplicity of what we did here. We didn’t alter our JSP in any
way to account for a caching strategy; we simply imported the OSCache tag
library and used it. A 5000 percent speed improvement with two lines of code?
Not bad at all! (Note: 5000 percent performance improvements are not guar-
anteed — this is a very simplistic example!)

Exploring the OSCache Tag Library
We’ve just met the <cache> tag, which is one-third of the OSCache tag
library! The tag library is very simple, consisting of the following three tags:

■■ <cache> — The main OSCache tag, it indicates a cacheable fragment of
the JSP page. This tag governs the scope, key, and duration of the cache
content.

Time-Saving Tools 201

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 201

■■ <usecache> — If this tag is present within the body of a <cache> tag,
it will force the use of cached content if possible.

■■ <flush> — This tag flushes specific caches or all caches.

Now let’s look at some of the OSCache key concepts; then we’ll build a more
complex example that uses all three tags.

Understanding OSCache Concepts
Each cache entry has three main attributes — key, scope, and duration — all of
which were automatically chosen for us in the previous example. We’ll also
look at how cache entries are flushed or refreshed.

Cache Key

The cache key is a simple String, a unique primary key of the cached fragment.
It is specified in the key attribute of the <cache> tag. If no key is specified, the
request URI with a full query String is used instead.

This means that if you set a specific key for your cache fragment, you can
share cached content among multiple JSP pages. Alternatively, if you have
only one cached fragment on a single page and you don’t want to share that
cached fragment, you don’t need to specify the key at all.

Scope

Each cache entry has a particular scope. The cache scopes reflect the scopes
available in JSP — application and session. Scope is specified by a simple
String in the scope attribute of the <cache> tag.

NOTE Request scope would be useless for a cache — think about it!

Application scope is the default, meaning that the cached content will be the
same for the whole application.

Alternatively, by using a session scope for your cache, you now have a cache
for each user session. This is useful in scenarios where the content of the page
is not frequently updated but is different for each user of your application.

As an example of where a session-scoped cache is useful, imagine an e-mail
application. Each user has unique e-mail content, but new e-mail is retrieved
only once an hour. For the rest of that hour, the inbox listing page could be
cached with a session scope.

202 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 202

Duration

Each cache entry has a set duration, the length of time until the cache is
refreshed. By default, the duration is set to one hour. Obviously, if you have
content that needs refreshing more often, you should specify a small duration
and vice versa.

The cache duration can be set in two ways:

■■ The time attribute of the <cache> tag indicates duration in seconds.
For example, <cache:cache time=”30”> will cache the entry for
30 seconds.

■■ Using the duration attribute of the <cache> tag, we can specify a
duration using either the Java SimpleDateFormat syntax or the industry
standard ISO-8601 date format. For example, <cache:cache
duration=”30h”> will cache for 30 hours using the SimpleDateFormat
syntax or <cache:cache duration=”XXXXX”> using the ISO-8601
date format.

Looking at a Caching Time Example
Let’s look at a slightly more complicated example utilizing some of the new
features we have just learned about:

<%@ page import=”java.util.Date”%>

<%@ taglib uri=”oscache” prefix=”cache” %>

The time is <%= new Date() %> uncached.

<p>

<cache:cache key=”timer” duration=”10s”>

The time is <%= new Date() %> cached in the Application Scope.

</cache:cache>

<p>

<cache:cache key=”timer” duration=”10s” scope=”session”>

The time is <%= new Date() %> cached in the Session Scope (session ID:

<%= session.getId() %>).

</cache:cache>

So, what can we learn from this example?
First, loading up the page in a browser will give us something like this:

The time is Mon Jan 13 19:22:27 EST 2003 uncached.

The time is Mon Jan 13 19:22:27 EST 2003 cached in the Application Scope.

Time-Saving Tools 203

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 203

The time is Mon Jan 13 19:22:27 EST 2003 cached in the Session Scope

(session ID: JLGKBHDOCOPN).

All three times here are the same because the content is being cached for the
first time. Waiting a few seconds (less than 10) and reloading gives you a page
like the following:

The time is Mon Jan 13 19:22:31 EST 2003 uncached.

The time is Mon Jan 13 19:22:27 EST 2003 cached in the Application Scope.

The time is Mon Jan 13 19:22:27 EST 2003 cached in the Session Scope

(session ID: JLGKBHDOCOPN).

Looking closely at the seconds of each time stamp, we can see that the two
cached entries (with the key “timer”) have not changed, even though time has
moved forward four seconds. Also note that as we have not changed session,
the session and application scoped-cache entries are identical.

Now let’s load up the page from another machine to simulate another ses-
sion; you’ll see a page like this:

The time is Mon Jan 13 19:22:36 EST 2003 uncached.

The time is Mon Jan 13 19:22:27 EST 2003 cached in the Application Scope.

The time is Mon Jan 13 19:22:36 EST 2003 cached in the Session Scope

(session ID: JLGKBHDOCOPN).

Here, the session-scoped time has changed because this computer is another
session, but we see the same application cache entry!

Finally, wait another few seconds, and reload from the second computer.
You will see the following:

The time is Mon Jan 13 19:22:42 EST 2003 uncached.

The time is Mon Jan 13 19:22:42 EST 2003 cached in the Application Scope.

The time is Mon Jan 13 19:22:36 EST 2003 cached in the Session Scope

(session ID: JLGKBHDOCOPN).

We can see from this last result that the ten-second duration has elapsed
and that the application-scoped cache entry has been refreshed. Also, note that
the session-scoped entry has not changed, as it was refreshed less than ten
seconds ago.

Looking at Advanced OSCache Features
OSCache has a few more features that are beyond the scope of this book, but
let’s briefly look at some of the other features that you might want to investi-
gate in more detail.

204 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 204

Caching Binary content

The OSCache tag library is only one “interface” into controlling OSCache.
Another is the CacheFilter. This is a Servlet 2.3 filter that caches entire
responses, not fragments of pages.

The benefit of the CacheFilter is that it can cache responses that contain
binary content, which is most useful for caching dynamically generated
images, PDF documents, and ZIP files.

Java API

OSCache has a full Java API to manipulate the various caches. This enables
you to write a class to flush particular caches from within your application or
to add cached content to a particular key.

For example, thinking back to our SampleNews.com example, using the
Java APIs you could automatically flush the headline cache from your back-
end code whenever a new story is posted.

Error Tolerance

One of OSCache’s best side effects is that it gives your application great error
tolerance. If an exception or error occurs while processing a JSP page, you can
instruct OSCache to serve cached content instead of the error.

Disk Persistence

All the examples we have seen use memory persistence, meaning the cache
entries are only stored in memory. Restarting the server or application would
clear all the caches. OSCache can, however, be configured to use disk caching
as well, where cache entries are written to disk — thereby surviving a server
restart.

This small section provides an idea of the great performance improvements
that OSCache can provide for almost any J2EE application. For downloads and
documentation, look at the OSCache Web site (http://www.opensymphony
.com/oscache).

Understanding Commons Lang

Commons Lang (http://jakarta.apache.org/commons/lang.html)
provides a series of helper classes for the java.lang package API, including
String manipulation methods, basic numerical methods, object reflection,
creation and serialization, and system properties.

Time-Saving Tools 205

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 205

It also provides some builder objects to make it simpler to overload common
java.lang.Object methods such as toString, hashCode, and equals.

There are more helper classes in Commons Lang than we can cover here. We
will look at the most useful methods and classes, but to find out more, browse
the well-written API docs (http://jakarta.apache.org/commons/
lang/api/index.html).

Exploring Most Useful Classes
Here are some of the more useful classes in the Commons Lang component,
with the exception of the builder classes, which are covered in the next section.

Included in org.apache.commons.lang are the following:

■■ StringUtils — This class contains many very useful methods for manip-
ulating String objects including case manipulation, text formatting and
padding, along with some simple search-and-replace methods.

■■ SystemUtils — A collection of simple methods to determine the version
of the current JVM.

Included in org.apache.commons.lang.exception are the following:

■■ NestableException — A simple exception class that handles nested excep-
tions. This works the same way as the JDK 1.4 class for those using
previous JDKs.

■■ ExceptionUtils — A collection of utility methods for manipulating
Throwable objects and Exceptions.

Using Builder Classes
The builder classes in Commons Lang are used to provide a simple way to safely
override common methods from java.lang.Object — namely, toString(),
equals(), and hashcode().

All the builder classes come with two varieties — those that use reflection
and those that must be explicitly constructed. As we’ll see in the following
examples, reflection variety is simpler to write but will execute marginally
slower and can have security permission problems.

As an example, let’s build a simple Customer bean using the build classes:

import org.apache.commons.lang.builder.ToStringBuilder;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

public class Customer {

String name;

boolean male;

206 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 206

int age;

public Customer(String name, boolean male, int age) {

this.name = name;

this.male = male;

this.age = age;

}

public String toString() {

return new ToStringBuilder(this).

append(“name”, name).

append(“male”, male).

append(“age”, age).

toString();

}

public boolean equals(Object o) {

if (!(o instanceof Customer)) {

return false;

}

Customer rhs = (Customer) o;

return new EqualsBuilder()

.append(name, rhs.name)

.append(male, rhs.male)

.append(age, rhs.age)

.isEquals();

}

public int hashCode() {

// you pick a hard-coded, randomly chosen, non-zero, odd number

// ideally different for each class

return new HashCodeBuilder(17, 37).

append(name).

append(male).

append(age).

toHashCode();

}

}

We can see from this class that the ToStringBuilder, EqualsBuilder and
HashCodeBuilder have simplified the writing of those methods. To add new
fields, simply add the relevant .append() clause for each field you want to
include, and the builder class does the rest of the work for you.

The builder classes handle many of the tricky tasks in writing these meth-
ods, such as

■■ Providing human-readable field names

■■ Handling null values

■■ Handling all types, including collections and arrays

Time-Saving Tools 207

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 207

Using the ToStringStyle class, we can govern the output of the toString()
method, configuring things such as whether or not fields are displayed and
printing on single or multiple lines. See the API documentation for more
details on this.

The default output of the previous Customer class is:

Customer@15ff48b[name=Fred Flintstone,male=true,age=30]

Using another style (ToStringStyle.MutliLineStyle), the output looks like this:

customer.toString() = Customer@15ff48b[

name=Fred Flintstone

male=true

age=30

]

We can see now that the builder classes are extremely useful, but they still
require a little modification each time a field is added or removed.

Let’s take a look at how we can use the reflection methods of the builder
classes to make the previous class simpler:

import org.apache.commons.lang.builder.ToStringBuilder;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

public class ReflectionCustomer {

String name;

boolean male;

int age;

public ReflectionCustomer(String name, boolean male, int age) {

this.name = name;

this.male = male;

this.age = age;

}

public String toString() {

return ToStringBuilder.reflectionToString(this);

}

public boolean equals(Object o) {

return EqualsBuilder.reflectionEquals(this, o);

}

public int hashCode() {

return HashCodeBuilder.reflectionHashCode(this);

}

}

208 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 208

While the reflection methods are very useful and we tend to use them in our
own applications, they are no magic bullet. As when using all powerful things,
you must be aware of the downsides as well as the positives before using
them.

Positives of reflection builder classes include the following:

■■ They make your code instantly easier to maintain as you have less code
duplication. New fields automatically become used in the built methods.

■■ Errors become less likely in your code because reflection can’t forget to
check certain fields.

Negatives of reflection builder classes include the following:

■■ They are slower because of the reflection being used. Depending on
what JDK you are using (JDK 1.4 is much faster at reflection) and the
performance needs of your application, this may or may not be an
issue. (Note that it is generally good practice to start with the slower,
simpler option and then optimize later if it is deemed a performance
issue.)

■■ To access private fields, the reflection methods must use Field.setAcces-
sible to temporarily change the visibility of fields. This will fail under a
security manager unless the appropriate permissions are set.

As we have seen, the Commons Lang component is very useful for aug-
menting almost every class we write, especially the builder classes.

Understanding Commons Collections

The second of the Jakarta Commons utility components we’ll discuss in this
chapter is Commons Collections. The Java Collections API was introduced in
JDK 1.2 and has been very useful for standardizing the collections and data
structures used in Java programs. Most of the Java2 APIs have become signifi-
cantly easier to use because of the Collections API.

Commons Collections is useful for a few reasons:

■■ It provides special implements of existing interfaces in the standard col-
lections API, such as List, Map, and Collection, such as Bag and Buffer.

■■ It supports adapters and converters from the older collections in Java1,
such as Enumeration and static arrays, to the newer collections in Java2.

■■ It has utility methods for manipulating collections, such as union, inter-
section, and closure.

Time-Saving Tools 209

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 209

As with Commons Lang, we’ll discuss some of the most useful classes in the
Commons Collections component. You will want to explore the API documen-
tation yourself to learn more about the details and other features offered by
this component.

Included in the package org.apache.commons.collections are the following:

■■ Bag — An interface (with implementations in DefaultMapBag, Hash-
Bag, and TreeBag) of a bag data structure. A bag is a collection of objects
that retains a count of the number of times each unique object occurs in
the collection. For example, this is useful in a shopping-cart scenario
where your collection might contain two apples, one orange, and three
mangos.

■■ BeanMap — An implementation of Map for JavaBeans that uses intro-
spection to get and put properties of the bean.

■■ Buffer — A buffer is a collection that allows objects to be removed in
some well-defined order. The removal order can be based on insertion
order (for example, a FIFO queue or a LIFO stack), on access order (for
example, an LRU cache), on some arbitrary comparator (such as a
priority queue), or on any other well-defined ordering.

■■ CollectionUtils — A group of useful Collection-related utility methods,
including methods to select and filter elements, compare different
collections, and modify elements within collections.

■■ SequencedHashMap — A map of objects whose mapping entries are
sequenced based on the order in which they were added (that is, the
key set iterator iterates in the order the items were added). We have
found this extremely useful for small maps where entry order matters
(such as for creating select boxes on a Web page).

Included in the package org.apache.commons.collections.comparator are
the following:

■■ ComparatorChain — A ComparatorChain is a Comparator that wraps
one or more Comparators in sequence. The ComparatorChain calls each
Comparator in sequence until it gets a nonzero result, or the end of the
chain of comparators is reached (and zero is returned). This Compara-
tor’s sorting algorithm is very similar to multicolumn sorting in SQL,
and this class allows Java classes to emulate that kind of behavior when
sorting a List.

■■ ReverseComparator — Using the decorator pattern, the ReverseCompara-
tor reverses the order of any other comparator.

210 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 210

Understanding Commons Logging

Unlike Lang and Collections, Commons Logging is not a group of useful classes
with a common purpose. Rather, it is a very thin adapter to different logging
libraries.

Traditionally, logging within a Java program is done by primitive means
such as System.out.println(). Using a logging API is good practice
because you can generally enable or disable logging through a configuration
file without changing any code within your application.

Currently, the supported logging APIs are as follows:

■■ Log4j — the Open Source logging component from Jakarta (http://
jakarta.apache.org/log4j), used by a large proportion of Java
applications.

■■ Logging API — The new Sun logging API introduced in JDK 1.4
(javax.logging).

■■ LogKit — Another Jakarta logging API that originated from the Avalon
project.

■■ SimpleLog — A simple logger that logs messages to the console.

■■ NoOpLog — Another simpler logger that ignores all messages.

The obvious question is why would we want to use Commons Logging
rather than one of the logging APIs directly? Surely it would be simpler to just
choose an API and stick to it.

Looking at Advantages of Commons Logging
Let’s look at the advantages of Commons Logging:

■■ It has no compile-time or runtime dependencies on any particular log-
ging package. As we’ll see, Commons Logging largely configures itself
based on what is available on the classpath.

■■ You have the added flexibility to change logging implementations with-
out changing any of your code.

■■ The Commons Logging API is very simple and clean, which allows you
to avoid the complexity of some of the larger logging packages until
you need to use it (if you ever do).

The only real disadvantage is that you have one extra dependent JAR and
another API to learn (albeit very similar to both JDK Logging API and log4j).
Commons Logging is used in many Open Source projects because the authors
know that they cannot predict what logging framework might be used by

Time-Saving Tools 211

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 211

consumers of their project. Rather than lock down to a particular framework,
they use Commons Logging and leave the final choice up to the consumer.

Looking at a Simple Example
Here is a simple example of a class that uses Commons Logging to log a few
basic messages:

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

public class SimpleLoggingExample {

private static Log log =

LogFactory.getLog(SimpleLoggingExample.class);

public static void main(String[] args){

log.debug(“This is a debug message”);

log.warn(“This is a warning message”);

log.error(“This is an error message”);

}

}

Depending on your environment, Commons Logging will use a different
logging implementation by default. If Log4J is available in the classpath, this
will be used. Failing that, if the platform is Java 1.4 or higher, the standard Java
logging framework will be used. If neither of those is available, the SimpleLog
implementation bundled with Commons Logging will be used. This simply
outputs messages of type WARN, ERROR, and FATAL to the console.

Commons Logging can be configured by a variety of mechanisms, including
a System property, a property file in the classpath, and the classpath itself. For
full details of the configuration options and mechanisms, see the online docu-
mentation at http://jakarta.apache.org/commons/logging/api/
index.html.

For now, let’s just configure it the simplest way by using a System property
and the SimpleLog:

java –cp commons-logging.jar –Dorg.apache.commons.logging.Log=

org.apache.commons.logging.impl.SimpleLog SimpleLoggingExample

This will print the following:

[WARN] SimpleLoggingExample - -This is a warning message

[ERROR] SimpleLoggingExample - -This is an error message

As you can see, Commons Logging is an extremely flexible utility compo-
nent that provides a simple way to adapt to different underlying logging
mechanisms. For more information, you can visit the Commons Logging Web
site at http://jakarta.apache.org/commons/logging.html.

212 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 212

Understanding Commons Digester

Commons Digester is a popular utility component that processes XML into
Java objects. If you have done any XML processing, you know that there are
traditionally two ways to do it — DOM and SAX. Neither of these methods is
simple, and each requires a considerable amount of XML processing code to
perform the operations that you want.

The idea behind the Digester package is to configure a series of rules that are
triggered by matching certain patterns. Rules are actions that modify Java
objects in some way (for example, creating objects, executing methods, or set-
ting bean properties). Digester itself ships with a rich set of predefined rules
but includes the ability to create your own rules if needed.

Traditionally, when reading an XML file into some sort of an object hierar-
chy, your code is 80 percent XML manipulation and 20 percent object manipu-
lation. Digester is a huge improvement over this traditional processing model.
It allows you to focus on exactly how the XML relates to your class architec-
ture, rather than the minutiae of parsing XML.

Looking at a Digester Example
This example builds an object model describing the legends of Java program-
ming. First, let’s look at the XML file we’re going to process:

<legends>

<legend>

<name>Bill Joy</name>

<achievement>The father of Java.</achievement>

</legend>

<legend>

<name>Joshua Bloch</name>

Time-Saving Tools 213

ALTERNATIVE XML DATA-BINDING TOOLS

There are many frameworks and components that convert XML into Java
classes and vice versa, including Castor and JAXB. Each has its own advantages
and disadvantages, but here are the reasons we use Commons Digester:

◆ It doesn’t force a close correlation between the Java class and the XML
file, because of the way it combines XML patterns and rules. This is a big
advantage as a utility component because it means you can use Digester
with existing XML files and Java classes without modification.

◆ Once you have learned the syntax of XML patterns and how the basic
rules are used, it is very simple and fast to develop with.

Also, it is worth noting that Digester only marshals XML ➪ Java, whereas
other components may be bidirectional.

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 213

<achievement>Sun Architect and author of “Effective Java

Programming Language Guide”</achievement>

</legend>

</legends>

It’s a fairly simple XML format but works for the purposes of this example.
Now let’s see the object model:

public class Legend {

String name;

String achievement;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public String getAchievement() {

return achievement;

}

public void setAchievement(String achievement) {

this.achievement = achievement;

}

public String toString() {

return “Legend(Name: “ + name

+ “ Achievement: “ + achievement + “)”;

}

}

Again, this is a very simple bean. Now we must create a class that actually
uses the Digester to turn our XML into our model.

The first thing we do is create a Digester object:

Digester digester = new Digester();

Then we add to it a series of rules determining what to do when a particular
XML pattern is encountered.

digester.addObjectCreate(“legends”, ArrayList.class);

digester.addObjectCreate(“legends/legend”, Legend.class);

digester.addBeanPropertySetter(“legends/legend/name”, “name”);

digester.addCallMethod(“legends/legend/achievement”, “setAchievement”, 1);

digester.addCallParam(“legends/legend/achievement”, 0);

digester.addSetNext(“legends/legend”, “add”);

214 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 214

Each pattern-rule pair is added by one of the preceding digester.addX()
methods.

An XML pattern is an expression that matches specific XML elements with
processing rules. Let’s look at the XML file again, with the associated expres-
sions listed for each element:

<legends> [legends]

<legend> [legends/legend]

<name /> [legends/legend/name]

<achievement /> [legends/legend/achievement]

</legend>

<legend> [legends/legend]

<name /> [legends/legend/name]

<achievement /> [legends/legend/achievement]

</legend>

</legends>

Note that the XML patterns are very similar to XPath expressions and to the
WebWork expression language (using slashes instead of dots).

Following is an explanation of what each of these rules does:

■■ addObjectCreate() — This method creates an object of the specified
class. Digester will create an instance of ArrayList and put it onto the
parse stack when it matches the legends expression.

The parse stack is made available during the context of the XML pars-
ing for manipulation by the rules being processed.

Similarly, the Digester will create an instance of the Legends model
bean and add it to the parse stack, above the ArrayList already created.

■■ addBeanPropertySetter() — This method sets a bean property of
the current object on top of the stack. We set the bean property name
(through the setName() method) of the current object on the top of the
stack (which will be the current Legend instance when this pattern is
matched).

■■ addCallMethod() and addCallParam() — These methods work
together to call a method on the current object. These call the
setAchievement() method of the current Legend object to the content
of the <achievement> XML element. This is just a bean property. This
could be achieved more simply using addBeanPropertySetter(),
but we used it here to demonstrate how the Digester can be used to call
any method with parameters.

■■ addSetNext() — This is one of a group of methods that manipulates
the stack. This method pops the top object off the stack (in this case, a
Legend object) and passes it to the named method on the object below it
(in our case, the add() method of the original ArrayList.)

Time-Saving Tools 215

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 215

With the rules set up, the only remaining step is instructing Digester to
process the XML file and produce the object model.

File input = new File(“legends.xml”);

List legends = (List) digester.parse(input);

Note that the parse() method returns the object on the bottom of the parse
stack, which in our case is the ArrayList created initially. This List contains
Legend objects.

And that’s it!
Most Digester usages are similar in form to the preceding example, but there

are a lot of other built-in rules that you can use depending on your needs.

Understanding Digester Rules
As mentioned previously, Commons Digester ships with a rich set of standard
rules built in. You can also add your own rules if you have more very complex
processing requirements, but normally the standard rules will suffice.

Here is a very brief summary of the standard rules. For more details, see the
Digester API docs online at http://jakarta.apache.org/commons/
digester/api.

Object-creation rules include the following:

■■ ObjectCreateRule — Creates an object of the specified class and pushes it
onto the stack.

■■ FactoryCreateRule — Creates an object using a specified factory class and
pushes it onto the stack.

Property-setting rules include the following:

■■ SetPropertyRule — Sets an individual property on the object at the top of
the stack, based on attributes with specified names (used for constructs
like <legend name=”Mike” />).

■■ SetPropertiesRule — Works like the SetPropertyRule except that it sets
multiple properties (for constructs like <legend name=”Mike”
city=”Sydney” />).

■■ BeanPropertySetterRule — Used to set a bean property based on charac-
ter data enclosed by the specified XML element (for example,
<name>Mike</name >).

Method-calling rules include the following:

■■ CallMethodRule — Calls a method on the object on top of the stack.
Parameters to the method are given by subsequent applications of the
CallParamRule.

216 Chapter 11

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 216

■■ CallParamRule — Sets a method parameter from an element’s XML
attribute or enclosed character data.

Stack-manipulation rules include the following:

■■ SetNextRule — Pops the top object off the stack and passes it to a named
method on the second to top object. It is often used to insert a bean into
a container object.

■■ SetTopRule — Pops the second-to-top object from the stack and passes it
to a named method on the top object. Note that this is the opposite of
the preceding rule!

■■ SetRootRule — Pops the top object off the stack and passes it to the
bottom object of the stack, the root object.

You have now seen how Commons Digester makes processing XML into
a Java class hierarchy much easier. For more details on the rules and the API
documentation of Digester itself, see the Web site at http://jakarta
.apache.org/commons/digester.html.

Summary

We have looked at a handful of reusable useful components that can make
everyday development easier.

OSCache, as simple as it is, can vastly improve the performance of JSP pages
(and other content) with very little effort.

Commons Lang and Commons Collections offer an enhanced set of features
to the core JDK. We’ve looked at some of the features, such as the builder
classes, which aid in the generation of tedious repetitive methods such as
toString() and equals(). Commons Logging offers a very simple abstrac-
tion over the logging dilemma.

Finally, we saw how Commons Digester makes it much easier to transform
XML files into an object model.

There are many Open Source components out there that can aid you in this
way, so hunt around. It’s rare to find components that do exactly what you
need, so a good strategy for component selection is to look for tools that are
very fine-grained (that is, do only one thing, but do it well) and easily extensi-
ble (be sure to get the source code).

Time-Saving Tools 217

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 217

14 463620 Ch11.qxd 10/28/03 8:51 AM Page 218

PA R T

Three

Developing the
Application

In Part III of this book, we will begin to create the PetSoar process using the
tools outlined in Part II. We will follow the application development process
beginning with how the automated build system is created. From there we
will introduce Test-Driven Development (TDD). Using TDD, we will then
dive right in to creating domain objects with Hibernate, accessing these
objects through a web interface with WebWork, and searching via Lucene.
We’ll also look at simple ways to secure the application, as well as how to
deal with common requirements in most applications, such as a session-
level service like a shopping cart. Finally, we’ll take a long look at compo-
nentization in both code and user interface and how we can effectively
manage these components to create a simple, re-usable toolbox to further
speed up application development.

15 463620 pp03.qxd 10/28/03 8:51 AM Page 219

15 463620 pp03.qxd 10/28/03 8:51 AM Page 220

221

To support the development of source code, a flexible development environ-
ment must be created. Development environments are often given little or no
thought and end up changing drastically many times through the life of a proj-
ect. While it should be expected that build environments will evolve over time,
a solid start can go a long way toward ensuring that your build process can
keep up with product development. Often, the development environment can
contribute the most day-to-day efficiencies, or lack thereof.

This chapter examines the build environment we’ll use for the PetSoar proj-
ect and shows how it enables us to rapidly code, test, and deploy project
releases. While we will cover topics usually associated with build environ-
ments, such as compilers and automated build systems, we will also discuss
detailed techniques and tips that can be used to speed up development outside
of the typical “code, build, test” paradigm. Much like the code in the system,
the build environment must also be kept flexible so that it can be adjusted to
suit the project as it evolves. The most important concept that we will stress is
that the developer’s environment should serve the developer, not the other
way around. Only then can productivity be maximized.

Setting Up the Development
Environment

C H A P T E R

12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 221

TI P While this chapter gives you a good look at how to set up a development
environment using Open Source tools, the focus of this book is building an
application using Open Source tools, not building the environment itself. A
companion book in the Java Open Source Library, J2EE Open Source Toolkit:
Building an Enterprise Platform with Open Source Tools by John Bell, Jim
Lambros, and Stan Ng (Wiley Publishing, Hoboken, NJ: 2003), guides you
through the plethora of Open Source tools available to assist you in choosing
your tools and then using them to build your development environment.

Working from Within the IDE

For many projects, especially smaller ones, developers often require nothing
more than a simple IDE to manage all their development needs. Compiling
sources is often all a developer requires in order to effectively work. Thank-
fully, just about any modern IDE can handle compiling sources. Some IDEs,
such as IntelliJ IDEA, offer multiple ways to compile sources: make project,
rebuild project, and compile individual source. Other IDEs, such as IBM’s
Eclipse, compile sources as they change automatically. Among all the high-
quality IDEs available for you to choose from, there should be one that suits
your needs and feels comfortable to you. The IDE is undoubtedly the place
where you, as a developer, will spend most of your time, so it is nice that it can
handle the build process as well. But sometimes you may require something
that the IDE can’t do.

TI P We know that IDEs are a very personal choice and that no two people
work exactly the same way. Even more, we’re aware that some people don’t
even use full-blown Java IDEs but instead opt for more general-purpose tools
such as Vim or Notepad. While we don’t have anything against these programs
(we’re all Vim users, if you’re curious), we highly recommend that you look at
more advanced IDEs that are specifically built for Java development. Through
features such as rich debuggers, unit test support, application server
integration, and support for complex refactoring, the productivity gained by
modern IDEs is indeed measurable. Following is a list of free and commercial
IDEs you may wish to check out:

■■ Eclipse: http://www.eclipse.org/

■■ NetBeans: http://www.netbeans.org/

■■ IntelliJ IDEA: http://www.intellij.com/

■■ JBuilder: http://www.borland.com/jbuilder/

■■ Pramati Studio: http://www.pramati.com/

222 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 222

The Problem: IDEs Don’t Automate
While IDEs attempt to provide as much functionality to you as possible, they
can’t truly provide every feature you might require for your application devel-
opment. One example of such a need that is very common and yet not sup-
ported by most IDEs is to build a Web Application Resource (WAR) that can be
deployed by Servlet containers such as Apache Tomcat. While this can be done
manually using the jar tool that comes with Sun’s Java2 SDK, doing this takes
time and requires that the developer remember to package all the classes, JSPs,
images, libraries, and configuration files correctly. Naturally, most developers
are likely to tire of this quickly.

Other examples of tasks that are not always supported by IDEs and can
become tedious quickly are:

■■ Running unit tests

■■ Generating JavaDocs

■■ Deploying code to application servers

■■ Generating code reports

None of these tasks is particularly hard to do. However, these tasks will be
required to be run countless times through the life cycle of a project. Following
are some reasons why IDEs are not good candidates for handling all build
tasks:

■■ Though they can compile and package code very easily, there’s little
room for automating steps such as bundling and deployment. Without
an automated build process, you end up preparing a list of actions that
need to be performed manually, one after another, by the developers to
test the application, create a deliverable bundle of the application, or
deploy the software to test or production environments.

■■ Many different IDEs are in use today, but there’s no easy way to trans-
fer one person’s IDE settings to another user. IDE settings are mostly
local to one computer. Sometimes it’s even hard to transfer settings
from an old version of an IDE to a new one! Without common settings,
releases and builds may become inconsistent.

■■ IDEs are not very scalable for big projects. If the project has a single
deliverable, an IDE may suffice. But when the project consists of many
subcomponents, or when the project should support different deploy-
ment environments, it gets very difficult to manage building, bundling,
testing, and deployment.

Given the preceding lists and the desire to avoid repetitive tasks, there
needs to be a way to automate some of our build by using tools other than the
IDE.

Setting Up the Development Environment 223

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 223

The Solution: Automated Build Tools
While the IDE works very well for some tasks, it fails miserably at other tasks,
so you should look at alternatives. The most universally known build tool is
Make. In the world of Java, Make has been replaced by Apache Ant. Both tools
are designed to ease the pain of executing repetitive tasks such as those identi-
fied in the previous section. Ant was built from the ground up to support just
about every need a developer might have for his or her build process. So,
rather than use the limited IDE, let’s look at using Ant for our build needs
instead.

Why do you need an automated build? A software development team is
much like a factory. As in a production line, many steps are required to pro-
duce a software product. The following list contains some of the typical steps
(in no particular order):

■■ Source code is written, according to some coding conventions.

■■ Source code is compiled and properly packaged.

■■ Other artifacts are produced: design diagrams, deployment descriptors,
or configuration files to name several examples.

■■ Documentation is generated for the consumers of the application, as
well as for the benefit of the team itself.

■■ The software is tested to ensure that no change to the source code can
break the working application and that the results are audited to be
correct.

■■ The software might finally be deployed to a test or production environ-
ment. This might involve sophisticated packaging tasks.

In real-world applications, several other steps are also involved. It is impor-
tant that a system is in place that allows these tasks to be automated correctly
and reliably.

Traditionally, software developers have performed these steps manually.
Because of this, whenever a developer would make some changes to the
source code, he or she would manually build the changes and test them, man-
ually deploy the altered code to the test environment, prepare a distribution,
and perform various other chores. Doing this involves a repetitive, monoto-
nous process. Aside from humans not liking repetitive monotonous tasks,
humans are particularly error prone when engaging in such tasks.

Using an automated build process, such as Ant, will alleviate most, if not all,
of these problems. Instead of having to perform these steps repetitively, we can
employ a script to handle these steps for us. We still have to write the actual
script of course, but this upfront cost is much less than the overall cost of doing
the repetitive tasks.

224 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 224

Using Ant for All Your Building Needs

Ant has native support for compiling sources, managing files, generating
reports, building .war files, and just about anything else you can imagine.
Thus, Ant appears to be the perfect candidate for what we’re looking for. After
identifying our build requirements, we can create a build.xml file that
implements all these needs and is run by Ant. Great, so it sounds like we’re all
set to begin development, right? Not just yet.

The Problem: Ant Isn’t the Silver Bullet
While it might appear that Ant is the silver bullet for building your applica-
tion, several weeks of use might make some things painfully clear. Rather than
let you discover these potential pitfalls yourself, we’ll save you the time and
just tell you: Ant, or any other automated build tool, is a heavyweight process.
For example, launching Ant requires that a new JVM be invoked before the
Ant process can even run. Even the fastest machines still require a half second
or so time to invoke the JVM. This means that even the most trivial task takes
some time to launch via Ant.

Half a second or a second or even ten seconds may not seem like a big deal.
And it isn’t — when you look at it in the context of a single occurrence. But
when taking into account that a developer compiles hundreds of times a day,
the time can quickly add up. In the end, Ant does not perform as fast as you
can work and can possibly slow you down.

The Solution: Use What Makes Sense
So, Ant does all we want, but does it slowly. Our IDE does only some of what
we want, but does it quickly. What are we to use? The obvious answer is, of
course, that we use both! Surprisingly, many developers stick to only a single
method of building their applications and end up either dealing with the slow-
ness (using Ant) or repeating tasks by hand (using an IDE). There is no reason
why you cannot use both Ant and your IDE to do some things quickly and
some things in an automated manner. Essentially, find the best way to do
something, and do what makes sense to be as productive as possible.

Using the Hybrid Approach

As we’ve already established, there is no such thing as a silver bullet when it
comes to software development environments, but that doesn’t mean we can’t
come very close. Using the basic concept of maximizing productivity, we can

Setting Up the Development Environment 225

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 225

see that combining the positive attributes of Ant and your IDE can ensure that
you are executing tasks in the quickest possible manner. We call this the hybrid
approach because it involves taking the best attributes from several techniques
and combining them to form a hybrid development environment.

Table 12.1 lists some of the build requirements for the PetSoar application
and details how we reached them, using either our IDE or Ant or both. We
choose the method to execute these tasks based solely on the method that can
allow the task to be invoked and finish in the shortest possible time. The goal
here is to invest in development speed above all else.

NOTE Later we will discuss how tasks such as running unit tests or deploying
the application can be done in your IDE. Some IDEs have native support for
these operations, but even if your IDE doesn’t, almost any Java IDE can perform
these tasks with a bit of work.

Companies are often willing to invest huge amounts of money in the tools and
technologies that make their development process faster, producing higher
quality code in shorter time. However, under the pressures of a project time-
line, investing in development speed is often neglected.

How do you invest in development speed? Learn to use your tools, espe-
cially your IDE, intimately. If you use the IDE for eight hours every day, every-
one on your team should be an IDE guru; there really is no excuse not to be.

Your team should also be continuously looking for ways to improve devel-
opment speed. Is it faster to run your tests inside the IDE? Can you run the
entire application server inside the IDE? Can you easily navigate the source
and learn about new pieces of code in your IDE? Can you optimize your Ant
scripts to run faster?

Table 12.1 Build Requirements

TASK EXECUTION

Compile sources Primarily done in the IDE, but also done
in Ant as required by other tasks

Run unit tests Primarily done in the IDE, but also done
in Ant as required by other tasks

Run application locally IDE

Generate JavaDocs and test reports Ant

Build .war file Ant

Deploy application Ant

226 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 226

Small up-front investments in development speed will pay off handsomely
in the long term. Imagine this example: Assume your developers run your
Ant build script an average of 100 times a day during a three-month project.
We’ll assume, generously, that a “developer day” includes five hours of solid
development work. Therefore, there are 60 developer days in the three-month
project.

Now if you can optimize the script to cut just 15 seconds from your build
process, you’ll save almost 25 minutes a day — or gain more than five devel-
oper days per developer during the project! Think about it carefully — cutting 15
seconds from your build process has just given you five extra days in a 60-day
project.

Is it worth spending an hour to optimize that script?

NOTE One of the authors of this book lives by a three-second rule: the time
from which he writes a line of code to the time he sees his test result should
take no more than three seconds. This is because he has a small brain and can
only handle making tiny changes at a time and doesn’t have the patience to
wait for a long build cycle, as he tends to forget his flow of thought after about
four seconds of daydreaming. What were we talking about?

Laying Out Your Project

Now that we have reinforced the notion that a development environment
should serve the developer and not vice versa, we need to decide on a way to
organize our sources and supporting files for the PetSoar application. When it
comes to the issue of organizing your project, there are generally two ways to
structure your files:

■■ Files are organized by type.

■■ Files are organized to simplify deployment.

No matter which option you choose, the important thing to remember is
that there should be some sort of structure to your project, as chaos will lead
you nowhere fast.

Structuring by Type
Structuring your project based around the various sources, libraries, resource
files, and so on is a simple hierarchical approach to managing your project.

Setting Up the Development Environment 227

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 227

The basic idea is to build a tree, starting at the root directory of your project,
which represents all the kinds of files your project contains. Generally, there
are three high-level types of files in a project: sources, libraries, and documen-
tation. Using this as a starting point, your project directory structure would
look like the following:

+ project

|---- docs

|---- lib

\---- src

Once these high-level file types have been identified, we can then drill down
a little deeper. For example, there might be two kinds of documentation:
requirements and mockups. There are also usually at least two types of
libraries: runtime and buildtime. Lastly, there are many types of sources to
manage. We’ll start with three types: Java sources, test sources, and JSPs:

+ project

|---- docs

| |---- requirements

| \---- mockups

|---- lib

| |---- buildtime

| \---- runtime

\---- src

|---- java

|---- test

\---- jsp

Continuing this process, you will eventually find a hierarchical structure to
store your files. This is very nice because it leaves no room for confusion as to
where new files should be placed in your project. Finally, we need to decide
how temporary files are stored (that is, files that aren’t really part of your proj-
ect but are created during the build process, such as compiled files). Following
the previous example, we end up with a structure such as:

+ project

|---- build

| |---- java

| \---- test

|---- docs

| |---- requirements

| \---- mockups

|---- lib

228 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 228

| |---- buildtime

| \---- runtime

\---- src

|---- java

|---- test

\---- jsp

This structure is logical and provides a simple and effective approach for
storing and managing project files. However, it isn’t without faults. By sticking
to a rigid structure like this, it becomes more difficult to construct other struc-
tures that may be required by application servers that deploy your code. In the
next section, we will discuss an alternative approach to storing your files that
eases this pain.

Structuring by Deployment
In the previous example project, structure, libraries, JSPs, and compiled classes
existed in different branches of the directory tree. Recall that the Servlet speci-
fication defines a .war file to be in the following structure:

+ jsps

\---- WEB-INF

|---- web.xml

|---- classes

\---- lib

As you can see, this is different from the structure previously discussed. So
would there be a benefit in structuring your project in a way that is closer to
this? After all, Ant can be directed to gather your various files and create this
structure, so why bother storing your project files this way?

We come back to the issue of investing in developer speed. Suppose a devel-
oper needs to deploy his application to a Web-application server to debug it.
He or she has two options:

1. Run Ant, which constructs a .war file, copy the file to a deployment
location, start the application server in debug mode, and finally connect
the IDE to the application server using remote debugging.

2. Launch the application server in debug mode from within the IDE, and
point the server to the project’s preconstructed application.

While the second option may only be 10 or 15 seconds faster than the first
option, that 10 or 15 seconds will quickly add up, just as we pointed out in the
“The Hybrid Approach” section earlier in this chapter, possibly saving days

Setting Up the Development Environment 229

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 229

over the life of the project. Using the previous structuring technique as a base,
a structure employing this technique might look like the following:

+ project

|---- build

| \---- test

|---- docs

| |---- requirements

| \---- mockups

|---- lib (previously lib/buildtime)

\---- src

|---- java

|---- test

\---- webapp

\---- WEB-INF

|---- classes (previously build/java)

\---- lib (previously lib/runtime)

Arguably, this structure is not as refined or clean as the previous ones we
have looked at. Of course, the advantage is that an application server need
only be pointed to src/webapp to deploy the entire application right away.

Picking a Structure
Choosing a particular project structure can be a difficult task, as there is no sci-
ence to it. In the end, the best choice is the one that limits your time building
and allows more time to be spent developing. Should you dismiss structuring
your project by file types if you know you will be deploying your application
a lot? Should you dismiss modeling your project after its deployment if you
desire a strict hierarchy for file types? The answer to both is “no.” Rather, it is
important to do a complete analysis before committing to a project file struc-
ture — this decision will most likely remain in effect for a very long time.

For example, depending on the application server you are using, there are
ways to deploy your project without storing your files in the .war specification.
While Tomcat does not allow this type of behavior, Jetty does. Not only should
these types of scenarios help you decide your file structure, but they might also
help you decide how you will use your build environment as well, such as which
Servlet container should be used for development (Jetty over Tomcat, for
instance).

And What about PetSoar?
As it turns out, we all generally like a strict hierarchy in our projects, and
as such we opted to follow the “structure by type” example for PetSoar.

230 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 230

However, we committed to this decision only after we were sure that an appli-
cation server existed that could accommodate quick development using this
structure. Caucho Resin is very good at this and is free for development, so we
felt confident that all of our bases were covered.

As PetSoar development progressed, we kept asking ourselves, “Is this the
fastest way to do this?” If we answered “no,” we would reevaluate the file
structure and return to development. Following is the final directory layout
we used:

+ project

|---- build

| |---- java

| \---- test

|---- docs

|---- lib

| |---- buildtime

| \---- runtime

\---- src

|---- java

|---- test (unit and acceptance tests)

\---- webapp (jsp files)

\---- WEB-INF

|---- classes (configuration files)

\---- web.xml

This approach takes a little from both methods and has turned out to be a
very good way for the four of us to rapidly write and test code.

In this section, we have stressed the importance of being able to quickly
deploy your application. Later in this chapter, we will go into the details as to
how we deployed PetSoar in our IDE using Resin. However, before we do this,
we’d like to further stress the desire to be able to complete build tasks in the
smallest amount of time possible. In the next section, we will apply this prin-
ciple for running unit and acceptance tests — something that can take as little
as a few milliseconds or as long as several hours.

Managing Unit Tests

Testing your application should be a large part of your development cycle and
should be equally represented in your build environment. Chapter 13 shows
you how to develop your code using Test Driven Development — meaning
that unit tests are written first and then the actual code follows. However, unit
tests aren’t the only kinds of tests that will be required to effectively guarantee
the quality of your application.

Setting Up the Development Environment 231

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 231

In addition to unit tests, it is common to have automated acceptance tests as
well as scripts that ensure the proper behavior of your application at the UI
layer. Because there are many kinds of tests that you may need, there needs to
be a way to distinguish these tests from each other. As we’ve already shown,
the PetSoar test code is all located in src/test. In this directory, you will find
both acceptance and unit tests.

Understanding Test Types
The two different types of tests being used in PetSoar are:

■■ Unit Tests — These test only individual units of code, typically at the
class level. Unit tests usually take only a few seconds to run and tradi-
tionally don’t require external services to be running, such as databases
or LDAP servers. Because unit tests run so quickly, they are often run
countless times throughout a developer session.

■■ Acceptance tests — These tests ensure that the functionality of a system,
typically involving many classes and services working in conjunction,
is behaving as expected. These tests usually take much longer to run
and may require that external services such as databases are running.
Because these tests take longer to run and require more setup, they are
typically not run as often as unit tests.

Because we want to invest in development speed, we need to identify what
our goals are for testing and then ensure that the test environment allows us to
reach these goals as quickly as possible. Here are our goals:

■■ To be able to run all tests with one command

■■ To be able to run only unit tests or acceptance tests

■■ To be able to run only the majority of fast unit tests, thereby allowing
developers to run most of the tests in a very short time

Now that we’ve identified the three main goals we wish to achieve in our
testing environment, we can begin to write some test suites that help us reach
these three goals.

The testing framework being used in PetSoar is JUnit, which is discussed in
detail in Chapter 3.

JUnit supports test suites, which are nothing more than a collection of tests
that all run together. Using this feature of JUnit, we’ve created four test suites
for PetSoar:

■■ UnitTestSuite — Contains all unit tests except the slow-running tests

■■ SlowUnitTestSuite — Contains only unit tests that take a relatively long
time to run (by slow, we mean longer than a second)

232 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 232

■■ AcceptanceTestSuite — Contains only the acceptance tests

■■ CompleteTestSuite — Aggregates the preceding three suites

At this point, any test that is written must be added to the correct test suite so
that it can actually be represented in the testing process of the build. Now that
the test suites have been created, let’s integrate these suites into build.xml:

<target name=”test” depends=”java, config” description=”Run unit tests”>

<mkdir dir=”${test.results}”/>

<junit haltonfailure=”true” fork=”true”>

<sysproperty key=”basedir” value=”${test.results}”/>

<formatter type=”xml”/>

<formatter type=”plain”/>

<formatter type=”brief” usefile=”false”/>

<classpath>

<path refid=”classpath.build”/>

<pathelement path=”${build.java}”/>

<pathelement path=”${build.test}”/>

</classpath>

<test name=”org.petsoar.CompleteTestSuite”

todir=”${test.results}”/>

</junit>

</target>

This Ant target runs a single test (or test suite, as the case is here):
CompleteTestSuite. Because CompleteTestSuite contains the other
three suites, this ensures that all tests, both unit and acceptance, are run when
the user enters the ant test command. This satisfies our first of three objec-
tives: the desire to run all tests using a single command.

The other two objectives can be met by individually running the other test
suites. We choose not to provide any sort of Ant task that runs these test suites
because we require running all the tests from within Ant only. However, we
still have a great desire to run other test suites inside our IDE — especially the
fast unit tests. Luckily, most modern IDEs, such as IDEA and Eclipse, natively
support JUnit. The final result is that the most common tasks, running a single
test case or a small set of fast test cases, can be accomplished quickly without
ever leaving the IDE — once again maximizing developer productivity.

Examining Test Suites, JUnit, and Batch Testing
For those of you familiar with JUnit, you may be wondering why we don’t use
the batchtest feature provided by the Ant-JUnit integration. The batchtest
feature is a very easy way to identify all the tests in your code base (usually
using a pattern such as Test*.java) and run them individually. We use test
suites for three reasons:

Setting Up the Development Environment 233

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 233

■■ Test suites provide a good way to distinguish varying degrees of tests
(acceptance, fast, and slow).

■■ The batchtest feature of JUnit runs each test using its own class-
loading environment, making each test usually have at least a half-
second startup time. Using a test suite avoids this delay and thereby
makes your tests run considerably faster.

■■ Because test suites are a standard JUnit feature, they can be run outside
of Ant, whereas the <batchtest> feature is unique to Ant only. If we
didn’t use test suites, we would not be able to run all of a single type of
test (unit or acceptance) within our IDE.

There are some downsides to using this technique. For example, we must
now be very careful to ensure that new unit tests are added to the test suite;
otherwise, they will never get run. One way around this limitation is to make
the test suite look in our test sources for test classes and then run them.

Also, because all the tests are being run in a single suite, they share the same
class-loading environment. While this enhances developer speed, it does mean
that individual tests must be careful to properly initialize and dispose of static
settings that could otherwise corrupt tests run later in the suite.

Using Version Control

Now that we’ve decided on a layout for all our sources and project files, as
well as decided on a standard way to construct our test environment, it’s
important to ensure that all our files are secured via source control. Without
question, all projects should use a source control system.

The obvious advantage of a source control system is that it provides a com-
plete audit trail of all changes on the code base. This can be used for determin-
ing what was changed in a class on a particular date or to retrieve an older
version of the system.

However, the more subtle advantage of a source control system is that
it gives confidence to the developers: confidence to introduce new code in
the system, make a refactoring, fix a bug in a radical way, or delete dead
code. Try walking along a three-meter plank of wood on the ground. It’s
pretty easy, isn’t it? Now try walking along that same plank of wood suspended
from a tower block. The wood hasn’t changed shape, but you’ll go much slower.
The source control system allows you to walk the wood with confidence.

NOTE Don’t actually try walking along a plank of wood, especially if it’s
suspended from a tower block; you could get hurt or, at a minimum, look
very silly.

For source control, we used the Open Source tool CVS.

234 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 234

Deploying PetSoar

Most IDEs can support compiling sources and running tests just like Ant does.
One of the more complex but valuable features we’d like our IDE to provide is
the ability to quickly deploy the entire application to an application server for
end-to-end testing. Because PetSoar deploys on any Servlet 2.3 compatible
container, we’ve chosen to use Caucho Resin as the container of choice for
development. While Resin is not a totally free product, it is free for develop-
ment use and suits our needs very well.

Because only a handful of IDEs support native integration with Servlet con-
tainers, we’ll show you a more general approach using Resin to launch PetSoar
and give access to quick and easy debugging. We chose Resin as the Servlet
container only because we think it provides the easiest way to configure and
deploy a Web application that is not yet in deployable form, as discussed pre-
viously. Without this ability, it would not be in our benefit to have chosen the
project structure for PetSoar that we did.

Resin, like all other Java Servlet containers, is nothing more than many Java
classes bundled together. When you run your favorite application server, you
are really just invoking the server’s main Java class. For example, Resin’s main
class is com.caucho.server.http.HttpServer. Knowing this, we can
configure our IDE to launch Resin specifically tailored to the PetSoar project in
its developmental form (see Figure 12.1).

TI P There are many servers available to you for deployment, some Open
Source, some commercial. Depending on your circumstances, different servers
may suit you. Refer to the documentation to see how feasible it is to launch the
server from within your IDE. Making development speed your number-one
priority, either choose a project layout that works with your application server
or an application server that works with your project layout. Whatever you do,
don’t get stuck having to run slow builds several times a day!

Most IDEs allow you to launch a Java class, such as Resin’s main class, in
either normal mode or debug mode. By choosing to launch Resin in debug
mode, you can place break points in your code or third-party code such as
WebWork if you have the sources readily available. Debugging is by far the
easiest way to track down bugs in your application, especially in the areas of
integration with other components.

Setting Up the Development Environment 235

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 235

Figure 12.1 Configuration for launching Resin from IDEA

By launching Resin directly from the IDE, you can step through code much
quicker than if you use remote debug methods. It also means that you can
quickly bring the application server up and down as you need to, all from
within your IDE. We recognize that not all applications can be deployed in
such a simple manner (the use of EJBs usually makes this much more compli-
cated), but the idea we are showing you is that your efficiency can often be
increased if the build environment can accommodate ways for you to work
without leaving your IDE.

Clearly it is much quicker to click the “Launch” button from within your
IDE than to run the .warAnt target, launch Resin standalone, and finally con-
nect your IDE to Resin using remote debugging. While the time saved may
only be 15 seconds, or a minute or two, time quickly adds up and can cost you
dearly.

TI P As of JDK 1.4, many debuggers now support the HotSwap capability.
HotSwap is a technology that allows developers to “inject” modified code into
a running process via the debugger. This means you can make changes to your
code and they can be automatically run without restarting the JVM, or even
redeploying your application.

236 Chapter 12

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 236

Summary

This chapter provided a high-level discussion of the build process used in the
PetSoar application, as well as several alternatives that can be employed. The
most important thing to remember is that the build environment should be
suited to maximize developer productivity. If you find yourself being slowed
down by your build structure, it’s time to reevaluate your build and release
cycle. Chances are that the same results can be reached using a much faster
build cycle.

Above all else, you should be intimate with your IDE and your build
process. Through the use of continuous integration and fast build cycles, you
should find that the development speed at which your team can operate will
be much faster than it has been in the past. And if you find yourself repeating
the same task more than a few times, that usually means it’s time to automate
that task rather than to keep repeating yourself. The upfront cost will certainly
pay off in a very short amount of time.

Setting Up the Development Environment 237

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 237

16 463620 Ch12.qxd 10/28/03 8:51 AM Page 238

239

Test Driven Development (TDD) is a modern technique for software design
that is both simple and incredibly powerful. TDD is a practice heavily adopted
by the Extreme Programming (XP) community. The addition of TDD to your
software-design toolbox can prove remarkably beneficial for all your software
development — regardless of whether you wish to use other features of XP.
TDD is a very simple idea: Before you write your code, write your unit test. At first
glance, it can be difficult to see the benefits of testing like this — don’t worry;
everyone feels that way. Also, while it sounds like a deceptively simple con-
cept, it can take a while to get used to testing first. However, once you get the
hang of it, it can be remarkably addictive, and the quality of your code rapidly
improves.

This chapter provides you with a small taste of what TDD is all about. We will
introduce you to the reasons why TDD is important and powerful. We will then
show you an example scenario of where TDD proves extremely valuable,
increasing productivity and decreasing the chance of bugs. Finally, we will show
you some useful design patterns that can make TDD even easier to master.

NOTE For a full tutorial on TDD, see Test-Driven Development by Example by
Kent Beck (Boston: Addison Wesley Professional, 2003).

Understanding Test Driven
Development

C H A P T E R

13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 239

Why Test First?

The most common reaction to TDD is the question, “Why would you test
before you even have an application to test?” This is an understandable ques-
tion, given that most traditional development techniques preach that testing
should only occur once the coding cycle has been completed.

Remember that the goal of this book is to promote simplicity above all else
when it comes to application development. Much of achieving this simplicity
can be accomplished by using TDD. While testing first may initially seem
counter-intuitive, it provides several important benefits over writing tests
after you’ve written your code.

First, let’s remember why we test our code: to have confidence that it does
what it is supposed to do.

Testing last is boring, and developers tend to not stick to the habit of writing
tests if they can get away with it. After writing some code that you’ve manu-
ally tested by hand (not through unit testing), you know it works — so why
bother writing a test? Also, as we will show later, making code “testable” usu-
ally involves some small level of refactoring to accommodate automated unit
tests. If your code has already been written, the incentive to alter it only for the
purpose of accommodating unit tests that you know will pass is very small.
Time would probably be better spent moving on to the next feature.

The reality is that code changes. It may change because of a bug, new fea-
ture, optimization, or refactoring. But as soon as it changes, it needs to be
retested. An automated unit test ensures that the class still lives up to its orig-
inal requirements after modification. If new functionality is being added to
your code, new tests must also be written. As long as you follow this regimen,
you can be confident that your code is always completely and properly tested.
Whether unit tests are written first or last, they must be written to properly
ensure that the quality of your project is as high as possible.

Testing First vs. Testing Last
The most obvious advantage of writing your unit tests first is that you no
longer need to do any sort of manual testing during the process of writing
your code. All you need to do is run your test suite after making any code
modifications; if the tests pass, you can stop writing your code. Ask yourself
this question: How often do you write some code and then jump through
hoops halfway through the code completion just to make sure your changes
are actually working the way you had hoped?

Manual testing, on the other hand, requires a considerable amount of work,
whether it be writing a very basic command-line program or setting up a rudi-
mentary user interface. With a complete automated test suite, you have only to

240 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 240

click a single button (“Run tests” in your IDE), and very quickly you know
whether your latest changes were correct or require more work. As your soft-
ware programs increase in scope and size, the effectiveness of the tests must
increase; otherwise, you will drown in bug fixing and not be able to provide
new features or enhancements. Also, the chance increases that eventually the
entire project will grind to a halt.

Writing tests last is a very difficult undertaking. As already mentioned, it’s
hard to get excited about writing unit tests for code that has already been ver-
ified to work. Furthermore, how can you really know when to stop writing
tests if you write them after you have written the code? Suppose you write a
single test and it passes. Great! But should you write another? Possibly. Then
another? Maybe. How long do you continue until you are satisfied? This ques-
tion cannot be answered, because the behavior of the code was defined when
you were writing the code, not the tests. By switching the order, the tests dic-
tate the behavior; therefore, it is much clearer when you should stop testing
and move on to another task.

Testing first also prevents feature creep by developers because developers
are only writing code to pass tests, not to add features. The tests themselves
map to features, but they are much more closely tied to actual customer
requirements. When developers begin to write code without trying to make
tests pass, they can often fall into the trap of trying to predict future customer
requirements — an often fatal mistake for any project.

Tests as Documentation

Not only do the tests provide confidence in your code; they also serve as fan-
tastic sources of documentation for your developers.

Assuming that you have more than one developer working on the project,
no one will intimately know every class and method. By having your code
fully unit-tested at all times, you have a true library of usage examples for each
class and method. Second, doing TDD means that your test should cover all
possible behaviors for a method, which means that your documentation cov-
ers the method in precise detail without any added useless fluff. If your tests
are wrong, the compiler or JUnit will complain, so the tests are always up to
date with the latest code contracts. This is exactly what developers look for in
code documentation — that it covers every class, is precise, and is always
updated.

If you’ve ever worked on a large project with pages and pages of written
documentation, you’ll know that the likelihood of its being up-to-date with
the actual code itself is very slim. The momentum of a project almost always
means that the documentation updates lag behind the code evolution — if the
documentation is ever updated at all. Having a comprehensive test suite built

Understanding Test Driven Development 241

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 241

first is a perfect way to avoid this scenario. Your test suite, and hence your doc-
umentation, is written before the code.

Software Design Through Test Driven Development

Besides the obvious advantages of having continually tested code, TDD
greatly enhances the quality of your software design. By testing first, the mod-
ularity of your code quickly comes into shape because you are writing a test
for a small piece of code that has no obvious connections to other code
(whether existing or yet to be written).

Writing your test first is also an exercise in defining the “black box” charac-
teristics of your code. To properly write a unit test, you must:

■■ Define the inputs as well as the expected outputs. This means your test
becomes a specification by example — not a complete specification, but
extremely valuable nonetheless, as it communicates understanding of
the intention of the code.

■■ Test for any side effects the code may have as well as the situations,
inputs, or external resources that may cause the code to throw an excep-
tion or have any other unusual behavior.

■■ Define the external resources required by the code you are testing
before you actually write the code.

Determining the inputs, outputs, and external resources, as well as defining
the behavior of the code, effectively sets up the interfaces, requirements, and
contract of your code without writing a single line. In this way, TDD is interface
focused — that is, it examines what a class looks like and what it does, not how
it does it. When it finally comes time to write the code (after you’ve written the
initial test), much of the framework for your class or method has already been
defined. All that is left is to fill the empty spots until the tests pass.

NOTE A contract is defined as an agreement between the users of an
interface and the author of the implementing code. The contract, in effect, is
how a particular piece of code would be used. Unit tests are very good at
exposing that contract through example.

Later in this chapter, we will define the TDD cycle in more specific terms,
followed by a real-world example showcasing the benefits of this process.

Narrowing the Requirements
Just having a list of requirements for a project is not enough. Not only do most
requirements documents not list all the requirements that clients expect; they

242 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 242

usually do not go into the level of detail required to develop and design an
application in the most efficient possible manner. Having the most detailed
requirements possible for the code we are currently writing is especially
important when using TDD because to develop from the top down, as
described in the “Work from the Top Down” section later in this chapter, you
need to fully understand what you are being asked to create.

We call this search narrowing the requirements — continually asking questions
and ensuring that the scope of the code you are about to write is perfectly
matched to the absolute smallest requirement identified by the client, project
manager, or analyst. Because you will be writing the tests first, this task isn’t as
hard as if the test were being written last. That’s because a test is essentially a
programmatic way to represent those narrowed requirements. This is good
because it means that it is possible, once the requirements have been drilled
down to their lowest level, to make an almost one-to-one mapping of require-
ment to unit test.

Surely you’ve faced a situation where the requirements given to you did not
explicitly outline every detail to be implemented. Since programmers are
mathematical and logical thinkers by our very nature, it is often frustrating
when we are asked to infer a certain level of requirement details in a project.
Instead of employing our creative sides in these situations, it is often better to
continue to ask for more details rather than to make assumptions for the client.
This approach has two major benefits:

■■ The client is not surprised when the system is finally used. That is
because the features have been verified and supplied by the client or a
liaison representing the client.

■■ Every requirement has been effectively stamped with approval; every
unit test written by the team of developers acts as a programmatic stop-
gate for unwanted bugs. This means that if undesired behavior does
creep into the code base, it will immediately be detected because at
least one unit test will fail.

Understanding Testing Techniques

Later in the chapter, we’ll showcase an example scenario using TDD, but first
we will present some very useful techniques when utilizing TDD in a real-
world project. You may find these techniques slightly different from your
usual practices.

The following sections define some techniques that are helpful when using
unit tests during your development process. These techniques are even more
important if you take the extra step and use TDD.

Understanding Test Driven Development 243

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 243

NOTE These are just some techniques that we have learned over time
through the experience of overall project design and development as well as
the practice of TDD. These techniques and tips are meant to serve as guides,
not as hard rules. As you continue to travel down the road of TDD, you will
build your own style and may or may not adopt some or all of the techniques
outlined here.

Place Unit Tests in the Same Package As Your Code
A good reason for placing your unit tests in the same package as your code is
so that the unit tests have access to protected and default methods and fields
in the class. In general, most of your unit tests will deal only with public-access
methods, but once in a while you may want to test smaller subcomponents of
your class that traditionally would not be exposed as public. By placing the
unit test in the same package, you can leave the subcomponent methods as
protected or default access and still unit-test them.

Never Skip Failing Tests
No matter how much of a rush you are in, never let a failing test make it into
the code repository. If you strictly follow a TDD process, this issue will not
come up. However, if you don’t adhere strictly to TDD, you should make
absolutely sure that all tests pass before committing any code to the repository.
In general, it is a good idea to run your entire test suite just before checking
your code into your code repository and also before you go home at night!
Don’t be afraid to leave a failing test that hasn’t been checked in on your
machine over night — it is often a good way to start the day.

Isolate the Untestable Using Mock Objects
Code that must access networks, databases, hardware, or GUIs is often very
hard to test. Save these tests for acceptance tests, and instead isolate this code
from your other code. As mentioned previously, you can do this by using a
number of smaller, modular classes instead of a single monolithic class. It is
also important to allow your code to have these untestable components easily
replaced. Your unit test can replace the object with a mock instance, thereby
bypassing the untestable component.

If the object that you want to mock is not under your control and does not
implement an interface, we recommend that you write a class that delegates to
the untestable class and use that to create a mock instance.

244 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 244

When to Use Interfaces and Classes
One issue that is hard to resolve, primarily because there is no exact science to
it, is when to use interfaces and when to just write classes (or abstract classes)
directly. Even in the PetSoar application, there is not one specific way of doing
things. For example, Pet is a concrete class with no interface, while PetStore is
an interface with a separate implementation.

Often, personal judgment and experience will help one arrive at a decision
of whether to use an interface or not. In PetSoar we used interfaces in any case
where there would be medium-to-complex code implemented. Otherwise, if
the object was very trivial like the Pet object (which is nothing but a Plain Old
Java Object, or POJO), we made a simple class because there was no concern of
any complexity fouling up our tests. Remember that just because an external
class can be tested, it might still be easier to write tests using mock objects in
place of a complex-but-still-testable object.

TI P A good rule of thumb is to start with a class and settle with that until you
need an interface for any reason (note that requiring a mock object to test
properly is a valid reason). Once you establish that an interface is needed,
simply refactor to extract the interface.

Stick with Simplicity
Simplicity is one of the core messages throughout this book. Make your tests
simple but effective, and remember that simplicity does not mean useless,
stupid, or easy. In fact, keeping your design and associated tests as simple as
possible can be very hard, but the effort is well worth it. While sometimes it
may seem almost too simple, within time you’ll see the simplicity begin to pay
off in a big way. By maintaining an architecture with simplicity at its heart,
you’ll find that unit tests will be easier to write and that future modifications
to your application will come with ease.

Be careful, though, not to confuse simplicity with weakness, nor should you
assume that simplicity is an easy task. In fact, keeping your architecture sim-
ple is one of the biggest challenges a software developer can face.

We stress this point because the use of TDD effectively ensures that your
software design stays as simple as possible. This is because TDD requires that
small, simple steps be taken before each new piece of development may take
place. When you follow this practice, your code automatically develops in a
modular and simple manner.

Understanding Test Driven Development 245

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 245

Work from the Top Down
Sometimes you may find yourself creating mock objects for code that doesn’t
even exist yet. For example, in developing PetSoar, one could have written a
mock PetStore before the real PetStore class was ever created. This type of top-
down approach ensures that each component is tested before the smaller, more
detailed components are even created. By taking this approach, you may find
yourself deriving interfaces organically based on real requirements of other
components. This is okay to do and in fact is a great way to ensure that your
top-down design approach stays focused on the task at hand without getting
sidetracked with external dependencies.

For example, traditional modular software architecture would suggest that
writing a single, large class that queries and updates a database would be bet-
ter implemented using many smaller, modular classes. However, when using
TDD, working from the top down is often the simplest way to write an initial
test. So, while you could approach TDD by writing a very complex test for the
very complex code that is yet to be written, it is much more straightforward to
write a smaller test that makes assumptions that other classes, also yet to be
written, are going to be put in place to support the top-level test. This would
effectively be the difference between the large class using JDBC directly versus
a more modular-class hierarchy implementing design patterns such as data-
access objects and a persistence manager. This is not to say that TDD can be
used as a substitute for good design. In fact, TDD is a catalyst for better design!
Not only does TDD help developers to think through the “breakage” condi-
tions for their code; it forces them to think through the usage of your code from
an external point of view first.

Knowing how to do this kind of top-down design through the use of TDD is
not a trivial task. One of the best ways to do this is to continually ensure that
the code you are writing is addressing only the core requirements at hand —
nothing more.

TI P Mock Maker (http://www.mockmaker.org) can be used to assist with
this process. By working from the top down, you will find yourself making many
interfaces and associated mocks before the actual interface is ever created.
One option is to use dynamic mocks, as detailed in Chapter 4. Another option is
to use Mock Maker to generate mock implementations of interfaces you
specify. The choice is up to you — both are very powerful ways to mock your
interfaces.

Use Lots of Small Objects
Extending from the top-down development approach comes the approach of
using lots of smaller (and simpler) objects that all have simple tests, which

246 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 246

tends to keep the complexity of the project under control. Don’t be afraid to
have many small and simple classes and associated interfaces in your code
repository. Ensure that each object has a specific role and does not do too
much. While sometimes it may seem redundant to those unfamiliar with your
development process, this extreme level of simplicity is what makes the TDD
cycle so beautifully straightforward and powerful.

Ensure That Your Test Suite Runs Quickly
To effectively follow the TDD cycle, your entire test suite should be able to run
in a very short amount of time. If your test suite takes more than a couple of
seconds to run, developers will run the suite less and less and thereby circum-
vent the entire process. By contrast, if the tests run in under a second, there is
no reason why a developer couldn’t run the test suite after every single change
made to the code. Just as you would refactor your production code if it were
too slow, you must refactor your test suite regularly to keep it efficient and up
to date. Using speedy mock objects is the best way to avoid long processing
time when running your test suite.

Avoid Statics and Singletons
Singletons and static methods tend to make your code nondeterministic,
meaning that testing of such code can be more complicated or impossible.
Because the goal of TDD is to ensure that your code is as simple as possible at
the atomic level, it is best to avoid statics when possible.

For example, one way to avoid statics is to set up a framework that keeps
track of object resources, like the Singleton Pattern does, but instead have this
framework externally to apply the resource through setter methods. In the
next chapter, we will explore Inversion of Control, which is one way to achieve
this.

If you must use static methods or singletons, be very careful with your test
fixture and ensure that the setUp() and tearDown() methods of your unit
test properly initialize and dispose of the static context.

Testing the TDD Cycle

The TDD cycle, when strictly adhered to, will ensure that at any given moment
the code in your project will be largely tested.

We say largely tested, not something like 100-percent tested, because no
testing methodology can promise 100-percent coverage — we’ll admit that up
front. However, TDD does present surprisingly high levels of completeness.

Understanding Test Driven Development 247

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 247

The TDD cycle is represented in Figure 13.1 and is as follows:

1. Write the initial test based upon your best estimates of the inputs and
outputs of the code you need to write. This test should not even com-
pile initially because the classes and methods it tests don’t exist yet.

2. Create the interfaces, classes, and methods required so that the test now
compiles and fails. Some IDEs can help with this by automatically fig-
uring out these methods and creating them for you. Methods that have
return values should return a “basic” value that requires no thought
(null for Objects and 0 or false for primitives).

3. Implement the code that is to be tested and continue writing until the
test passes.

4. Refactor the resulting code to improve the design and remove duplication.

Figure 13.1 The TDD cycle

Write the test

1

2

3

4
Get the test
to compile

Implement
the code

Refactor

248 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 248

Example Scenario Using TDD
To better see the benefits of testing first, we will create a new feature and then
add new requirements to that feature using TDD.

To illustrate the TDD, we shall implement a simple class for stripping XML
tags from a string.

Step 1

Following the TDD cycle, we write the tests first. The way to get started is to
write the simplest possible test. This is Step 1 of the testing cycle.

public void testStripTags() {

// the first thing we do is instantiate

// the class we want to test...

TagStripper stripper = new TagStripper();

// ... then we test the behavior

assertEquals(“hello, “,

stripper.strip(“hello, <world>”));

assertEquals(“this hello”,

stripper.strip(“this <is> hello”));

assertEquals(“not bold”,

stripper.strip(“not bold”));

}

This simple test has defined the signature for a new method called strip()
and how the method is expected to behave.

Step 2

Step 2 of the testing cycle is to write the stub classes, interfaces, and methods
so that the new tests will compile, run, and fail.

public class TagStripper

public String strip(String content) {

return null;

}

}

Now the test compiles and can be run. If all is going according to plan, a Red
Bar (indicating test failure) should be produced by your test runner.

testStripTags: expected:<hello, > but was:<null>

Understanding Test Driven Development 249

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 249

NOTE We use the terms Red Bar and Green Bar heavily throughout the rest of
the book to indicate test failures and passes, respectively.

The test failed because the expectations did not match the return value
(null).

This Red Bar acts as a sanity check. If a Red Bar were not received, it would
alert you to the fact that all is not as expected. Maybe the wrong test case is
being run (a common mistake), the tests are not actually testing anything
useful, or perhaps the functionality is there already and you forgot about it.
Sometimes we even throw in deliberate “bugs” as a sanity check that our test
code is working as we expect.

Step 3

We are now free to actually start writing the implementation code of the
tagstripper, running the test each time we think we are close to passing. This is
Step 3 of the testing cycle.

The simplest way to strip out the tags to get the test to pass is to use a regu-
lar expression.

public String strip(String content) {

return content.replaceAll(“<.+>”, “”);

}

To complete Step 3, a passing test is required. Running the test yields a
Red Bar.

testStripTags: expected:<not bold> but was:<>

This is caused by the regular expression being greedy and matching the pat-
tern from the opening angle bracket in the first tag to the closing angle bracket
in the last tag. Without a test, this could have slipped by.

By adding a question mark after the plus, we can force the pattern to not be
greedy.

public String strip(String content) {

return content.replaceAll(“<.+?>”, “”);

}

Now the test is run again, and you should get a Green Bar indicating that the
test passes.

Look at how simple the code is. The entire method simply uses a five-
character regular expression. This kind of simplicity is common in TDD.

That’s Step 3 completed.

250 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 250

NOTE The previous code uses the regular-expression enhancements added to
Java in JDK1.4. If you require regular-expression support on earlier versions of
the JDK, you can make use of the Jakarta RegExp project (which provides a
simple-to-use regular expression engine) or Jakarta ORO (which adds a full
suite of text-processing tools). Following are the URLs for both projects:

http://jakarta.apache.org/regexp/

http://jakarta.apache.org/oro/

Step 4

Step 4 is to refactor the code to its simplest form. In this case, there’s very little
that can be done to simplify further, so this stage can be skipped.

Example Scenario Revisited
You may have a nagging feeling that the code in the previous example is too
simple. What happens if the input is null? How should the method behave? It
could return null, an empty string, or throw an exception. Following are the
steps for a slightly more complex example scenario.

Step 1

At the moment, the test does not define the behavior. This can be added to the
test case that takes us back around to Step 1.

public testNullInput() {

TagStripper stripper = new TagStripper();

assertNull(stripper.strip(null));

}

This test states that if null is passed to the strip() method, null should be
returned.

Step 2

Step 2 is to get the test to compile. It already does, as no new methods have
been introduced. Running the test produces a Red Bar.

testNullInput: java.lang.NullPointerException

Understanding Test Driven Development 251

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 251

Step 3

On to Step 3 — aiming for the Green Bar. A simple null check in the method
could fix this:

public String strip(String content) {

if (content == null) {

return null;

} else {

return content.replaceAll(“<.+?>”, “”);

}

}

Running the test again produces a Green Bar.

Step 4

Step 4 is to refactor the result; but again, there’s not a lot that can be done to
simplify it, so this stage can be skipped.

NOTE In all but the most trivial applications, this last step is one of the most
important and must not be overlooked.

Remember that just because your tests pass does not mean your code is
as simple as it could be. In Step 4 we look back at the code and test we
have written and try to refactor them both to improve the simplicity of the
code. As we have written a comprehensive test, while we refactor we can
continually run our test to assure ourselves that our refactoring doesn’t break
anything.

Enhancing the Functionality
In order to continue the TDD cycle, whenever a new requirement, bug, or
re-factoring is requested to be implemented, a test must first be written in
such a manner that it first fails and then passes once the feature has been
implemented.

Step 1

Let’s start by adding a new requirement to the strip() method, such that it
should not remove tags that start with uppercase letters. Following the cycle
illustrated in Figure 13.1, the first step is to write new tests for this requirement:

252 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 252

public void testDontStripCapitalizedTags() {

TagStripper stripper = new TagStripper();

// do strip

assertEquals(“world”,

stripper.strip(“<hello>world</hello>”));

assertEquals(“world”,

stripper.strip(“<hELLo>world</hELLo>”));

// dont strip

assertEquals(“<HELLO>world</HELLO>”,

stripper.strip(“<HELLO>world</HELLO>”));

assertEquals(“<Hello>world</Hello>”,

stripper.strip(“<Hello>world</Hello>”));

}

Step 2

Step 2 is to get the test to compile. It already does. The test runs, and it fails
with a Red Bar.

testDontStripCapitalizedTags: expected:<<HELLO>world</HELLO>>

but was:<world>

Step 3

Step 3 is to get the test to pass. The regular expression can be modified to
ensure the tag starts with a lowercase letter. Of course, a tag may also start
with a forward slash, so this must be taken into account.

public String strip(String content) {

if (content == null) {

return null;

} else {

return content.replaceAll(“</?[a-z].+?>”, “”);

}

}

Running the test produces another Red Bar.

testStripTags: expected:<not bold> but was:<>

Understanding Test Driven Development 253

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 253

Oddly, the new test actually passes, but a previous test is now failing.
Because the tests are automated and all the tests are run all the time, code can
be changed confidently, knowing that anything that may break previous work
will be caught.

This shows why it is vitally important to run all the tests regularly, not just
the test that you are currently working with. Running the complete test suite
after each incremental change allows you to very quickly determine the effects
of the new code. Looking at it from another angle, there is nothing more frus-
trating than running the complete test suite after a whole day of development
to find failures because you can’t be sure exactly which change you made has
caused the tests to fail.

The failing test occurs because the regular expression doesn’t correctly
match tags containing a single letter (such as for example). A subtle
change to the regular expression can fix this:

public String strip(String content) {

if (content == null) {

return null;

} else {

return content.replaceAll(“</?[a-z].*?>”, “”);

}

}

Now the test can be run to reveal a Green Bar, and Step 3 is complete.

Step 4

Again, no work is required for Step 4, as the code is very simple already and
contains no duplication.

As you can see, only a slight modification was made to the original code and
now all three tests pass. You have now followed three complete cycles of TDD.

Summary

TDD is one of those incredibly simple concepts to grasp, yet very hard to mas-
ter. This chapter has demonstrated a real-world scenario and development
cycle that showcases TDD in such a way that you can begin to apply these
techniques in your projects as soon as tomorrow morning. However, it is
important to remember that no one can change the development style
overnight, and it will most likely take several project lifecycles before you can
truly use TDD from start to finish. The rest of Part III shows you how to use the
TDD cycle to build the PetSoar application.

254 Chapter 13

17 463620 Ch13.qxd 10/28/03 8:51 AM Page 254

255

In Chapter 13, we looked at Test Driven Development (TDD) as a means of
identifying what our components actually need to do, rather than what we
think they will need to do. This tends to lead to a smaller, more focused code
base and a clearer understanding of the interactions between components.
The refactoring aspects of TDD mean the code is also going to be as clean as it
can be.

This chapter provides a broader definition of a component and describes a
number of ways to manage dependencies between components. We look at
containers and the ways in which they can help components and the idea of
coupling. We introduce a pattern called Inversion of Control and explain how
it can lead to cleaner, more testable, more loosely coupled code.

Understanding Components and Services

In its simplest terms, a component is just an object or group of objects that does
something useful. The component will be available through some sort of reg-
istry, which can be as simple as a static factory method or as complex as the
Java Naming and Directory Interface (JNDI) component registry in J2EE.

Typically, a component provides some sort of service, so the terms “service”
and “component” are used largely interchangeably throughout the remainder
of the book.

Managing Lifecycles and
Dependencies of Components

C H A P T E R

14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 255

In this context, an application boils down to interactions between compo-
nents, so it is vital that we understand exactly how components find one
another and interact with one another and how they are created and destroyed
(and other parts of their life cycle).

The Java language provides a nice abstraction for talking to components, in
terms of interfaces and concrete classes. We can describe a component by an
interface (that is, the methods it supports) and then provide a concrete imple-
mentation in a separate class that implements the interface.

Handling Dependencies

There are probably as many ways of handling component dependencies as
there are programmers writing components (or at least programmers writing
component frameworks). This section presents a number of these and high-
lights some of their strengths and weaknesses.

Using Direct Instantiation
This is the simplest case, in which we do not even use an interface to abstract
our implementation. The component directly constructs an instance of its
dependent, referencing the implementation of the component class:

public interface Hat {

...

}

public class Beanie implements Hat {

...

}

public class Head {

private Hat hat;

public Head() {

hat = new Beanie(); // concrete implementation

}

...

}

This is an example of tight coupling. Every time we instantiate a Head, it
comes with a Beanie. This makes it much harder to test the behavior of a Head,
and in particular we cannot substitute a mock Hat to see how the Head inter-
acts with it.

256 Chapter 14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 256

TDD tends to produce quite loosely coupled systems, which is generally a
good thing. The code is more maintainable because you can make a change
without having to follow spaghetti links through the code base. It is also more
testable because you can limit the scope within which you are testing (for
example, by mocking a database connection so you don’t make expensive
database calls).

Using a Factory
To introduce a level of indirection, we can use a static method in a factory class.
In this case, we see that the Head class doesn’t directly instantiate the imple-
mentation. So, building on our existing Hat and Beanie:

public class HatFactory {

public static Hat getHat() {

return new Beanie(); // concrete implementation

}

}

public class Head {

private Hat hat;

public Head() {

hat = HatFactory.getHat(); // indirection through factory

}

...

}

This looks a little better, because the Head no longer references the Beanie
directly, but we can still get only one type of Hat.

(It is worth noting that now that we have a factory, we could make the
Hat instance a Singleton just by making the getHat()method return a single,
static instance.)

We can add methods to the factory to provide any number of Hats, but how
do we tell the Head which method to call on the HatFactory?

Using a Registry
One solution is to store a type of Hat and have our static method instantiate the
instance by reflection rather than by calling the concrete class’s constructor
(this is called late binding). This allows us to substitute a different Hat class
whenever we like, which means that we could sneak in a MockHat in the setup
for a test (and remember to remove it afterward).

Managing Lifecycles and Dependencies of Components 257

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 257

public class HatRegistry {

private static Class hatClass;

public static Hat getHat() {

try {

return hatClass.newInstance(); // by reflection

} catch (Exception e) {

...

}

}

public static void registerHat(Class newClass) {

hatClass = newClass;

}

}

public class Head {

private Hat hat;

public Head() {

hat = HatRegistry.getHat(); // indirection through registry

}

}

At last, we have completely decoupled the type of Hat from the Head. We
can now create Heads wearing all sorts of Hats just by changing the type in the
registry.

NOTE The registry pattern is described in Patterns of Enterprise Application
Architecture by Martin Fowler (Boston: Addison Wesley Professional, 2002).

Using a Container
If we follow the idea of a registry to its natural conclusion, we end up with the
concept of a container. A container provides services to the components it con-
tains, usually by means of some sort of context. The component asks the con-
tainer for any services or facilities it requires. The following code illustrates a
simple container context. Don’t worry about the container implementation —
the interesting features here are the interfaces that the container implementer
(or vendor) provides and the way that our Head now gets its Hat.

// defined by container provider

public interface Context {

258 Chapter 14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 258

Object getComponent(String name);

}

// defined by container provider

interface Component {

void setContext(Context context);

}

// our own application class

public class Head implements Component {

private Hat hat;

public Head() {

// nothing to do in constructor now

}

// called by container after constructing our Head instance

public void setContext(Context context) {

hat = (Hat)context.getComponent(“hat”);

}

...

}

Now we can get whatever components we like from the container. The
container’s responsibility is to manage any resources we need, which typically
requires some external configuration. This makes it much easier to write com-
ponents, because we can now focus solely on the component’s behavior and
not worry about how we obtain any other components with which it interacts.
What’s more, the container can manage complex issues for us such as
contention for limited resources (database connections or threads) by imple-
menting clever pooling algorithms.

Understanding the Component Lifecycle

Some components will have a life cycle associated with them. This defines a
series of states the component will exist in and typically allows only certain
activities in certain states. For example, a database connection instance could
be available or busy at any point and may throw an exception if we try to run a
query while it is in its busy state.

An additional benefit of having the component in a container is that we can
rely on the container to manage the life cycle of the component. This again
simplifies the code we have to write. For example, the container could guar-
antee to call a reset method on our hypothetical database connection immedi-
ately before handing it to us, so that we know it will be in a consistent state.

Managing Lifecycles and Dependencies of Components 259

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 259

(Many J2EE containers have exactly this sort of behavior when handling
pooled resources such as database connections.)

Understanding Inversion of Control

So far, we have assumed that the component (Head) is responsible for getting
its own dependent (Hat). As we introduce more components, and more depen-
dencies between components, there could be a huge increase in the amount of
code we have to write in each component just to get components talking to one
another.

To recap, our journey so far in getting a Hat on our Head has led from a
concrete implementation (via a factory and a registry) to a container, but
throughout the journey the Head has been the master of its own destiny.
Another option, which addresses the issue of managing complex dependen-
cies, is to have the container pre-populate the component with everything it
needs. This is known as Inversion of Control (IoC).

For each component we register, we tell the container (either programmati-
cally or via an external configuration) about any dependencies the component
has. Then when we ask for a particular component, the container will assem-
ble all of its dependencies (recursively, so that any sub-dependencies are also
assembled) and deliver us a fully configured component.

There is more to this than initially meets the eye, so let’s explore the impli-
cations of IoC.

Examining the Benefits
Using a container that supports IoC gives us the following benefits:

■■ Components are easier to test. In effect, our test case becomes a container.
In the setup for the test, we instantiate the component in the way the con-
tainer would and configure any dependencies. Then we test the compo-
nent’s behavior and make various assertions about what should have
happened.

■■ Components are easier to implement. As mentioned, there is no need to
hardwire the configuration of all those dependencies in the component
implementation.

■■ As a direct result of this, we can focus more on developing our business
application and worry less about the plumbing between the components.

■■ It is more aligned with the spirit of TDD. We get loosely coupled com-
ponents by design, which makes testing, development, and ongoing
maintenance of our application easier.

260 Chapter 14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 260

Exploring the Disadvantages
However, it is not all sweetness and light:

■■ The dependencies have to be declared somewhere. Whether this is pro-
grammatically or externally, or a combination of the two, we need to
communicate to the container exactly how to manage the component.

■■ Because of this, it is not immediately obvious just by looking at the
component exactly what its dependencies or life-cycle constraints are.
We must remember to look elsewhere at its deployment configuration.

■■ Our component is now coupled to the container, either by having to be
deployed with a configuration or being marked by container-specific
code such as marker interfaces. This is true of virtually all containers,
however, and not particular to just IoC. XWork, the IoC container we
use for PetSoar, uses a combination of marker interfaces and XML con-
figuration to define both the dependencies and the life-cycle model for
the components we deploy to it. This is described in more detail later in
this chapter.

Managing Lifecycles and Dependencies of Components 261

INVERSION OF CONTROL IN EJB CONTAINERS

IoC is used in EJB containers. As mentioned, a container is essentially
something that handles resource management for you. EJB containers call
ejbCreate(), ejbRemove(), ejbActivate(), and ejbPassivate() in your
business-logic code (the bean itself) at the correct times based on the life cycle
of your bean. The SessionContext or EntityContext is pushed to the bean as well
using the methods setSessionContext() or setEntityContext(), also
called by the container. As for services, EJB containers provide essentially three
services and/or resource-management features:

◆ Security — EJB provides a standard mechanism to dictate which roles
have access to a particular resource.

◆ Persistence — EJB Container Managed Persistence provides a way for
objects to be persisted, usually to a relational database.

◆ Transactions — Can be demarcated in six different ways in the EJB
deployment descriptors, some of which automatically handle transaction
behavior for you (Container Managed Transactions).

The downfall to this list is that it is static. There is no way to tell an EJB
container that some of your business objects need access to the UserProfile
resource. In the purest form, containers that perform passive resource
management do nothing by default. It is up to the developer to provide
extensions upon the framework that provide for the three preceding EJB
features, as well as new features identified, such as the UserProfile,
ShoppingCart, or HibernateSession resource management.

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 261

In practice, this latter constraint (coupling to the container) is not usually a
handicap. We will typically choose the container as an up-front architectural
decision. (Or at least we will choose the type of container. For example, we
might decide to deploy to a J2EE Servlet container, so we will write Servlet
classes that extend the javax.servlet.http.HttpServlet class, or EJBs that imple-
ment javax.ejb.EJBObject. This does not limit us to any particular vendor’s
container, just to a general container model.)

Understanding Separation of Concerns

In all but the simplest of systems, the fact that we are extracting the configura-
tion details from the component is actually a good thing. We are following a
well-established strategy known as Separation of Concerns, which says that
different issues (such as implementation, deployment, and configuration)
should be handled separately. Again, this is in the spirit of loose coupling. The
same component could be deployed differently in different containers, or even
multiple times within the same container, without any code changes to the
component itself.

Using Containers to Define Scope

Of course, we are not limited to deploying components to just a single con-
tainer. There is an elegant model whereby we can nest containers to allow us
to limit components to a particular scope. The way it works is like this.

Each container apart from the outermost one holds a reference to a parent
container. When a container identifies a dependency, it looks to see whether
the dependency corresponds to a registered component. If not, it passes the
request to the parent container and so on up the line until either the request is
fulfilled or we run out of containers.

In the J2EE world, this is directly analogous to the Request, Session, and
Application scopes of an HTTP request. We assemble three containers in a
chain: the innermost container represents the Request scope, the middle one
the Session, and the outer one the Application scope. Thus, if a component is
in the Request scope, it will be available immediately to any component
requesting it. Failing that, the container will defer to its parent representing the
Session scope, and finally we fall back to the Application scope container.

In this way, we can model the behavior of an HTTP request by a simple rela-
tionship between containers.

262 Chapter 14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 262

Using XWork’s Container Implementation

There are a number of Open Source IoC containers available for use. Several
containers exist for the Apache Avalon project, as well as one for XWork, the
underlying engine in WebWork. Because we are using WebWork, it makes
sense to use XWork as our IoC container. However, the concepts and techniques
offered by Avalon and XWork are very similar and, as such, are applicable to
either container.

The XWork IoC implementation works in the following way:

1. Reads an XML configuration file that specifies the resource’s class, scope,
and enabler interface. The enabler interface must be implemented by any
resource that depends on the resource being registered. For example, our
Head would implement a HatAware interface to alert the container to
the fact it requires a Hat resource.

2. Applies all resources to the object based on the enabler interfaces it
implements, recursively resolving dependencies. If a resource is not yet
available, it is initialized as explained in Step 3.

3. Calls the init() method of the action object at the start of the resource
scope and the dispose() method at the end (if they exist and the
action implements the Initializable or Disposable interface, respectively).

Configuring the Container
Let’s look at an example configuration of the XWork container to get a better
idea of how resources are associated with a scope and an enabler interface:

<components>

<component>

<scope>application</scope>

<class>HibernatePersistenceManager</class>

<enabler>PersistenceAware</enabler>

</component>

<component>

<scope>application</scope>

<class>DefaultPetStore</class>

<enabler>PetStoreAware</enabler>

</component>

<component>

<scope>request</scope>

Managing Lifecycles and Dependencies of Components 263

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 263

<class>HibernateTransaction</class>

<enabler>TransactionAware</enabler>

</component>

<component>

<scope>session</scope>

<class>SimpleShoppingCart</class>

<enabler>ShoppingCartAware</enabler>

</component>

<component>

<scope>session</scope>

<class>DefaultUserProfile</class>

<enabler>UserProfileAware</enabler>

</component>

</components>

As new resources are developed in the application, you will want to create
new enablers as well as define the scope for that resource. The configuration
file is called components.xml and must be located in the classpath of your
application (usually WEB-INF/classes). This makes it extremely easy to
introduce new resource types in the PetSoar container, whereas other static
containers such as EJB don’t support this kind of modularity.

Understanding How the Container Works
We won’t get into too much detail about how the XWork implementation
works, but needless to say it is very simple and comes out to fewer than 400
lines of code — not bad considering the power that it offers! What we will
discuss here is how the various container scopes tie into the Servlet-specific
environment.

The core container actually does not limit itself to the three scopes we have
discussed so far. In fact, the scope names could be anything you desire. The key
is that there must be an instance of a com.opensymphony.xwork.interceptors
.component.ComponentManager associated with each scope that you require
access to. A ComponentManager is a simple class that allows the registration of
resources as well as the application of those resources onto objects.

ComponentManagers may be chained together, usually ordered by scope
hierarchy. This is accomplished easily because each ComponentManager has an
optional “fallback” ComponentManager associated with it. In WebWork, the
hierarchy for access to a ComponentManager is first Request, then Session, then
Application. The ComponentInterceptor bundled with XWork passes a WebWork
action to the ComponentManager associated with the current ActionContext,

264 Chapter 14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 264

which was in turn set by WebWork’s ServletDispatcher to be the Component-
Manager associated with the HttpServletRequest. That ComponentManager
then passes the action to its fallback ComponentManager that is associated with
the visitor’s session. The next fallback is then the application-level Component-
Manager, which in turn has no fallback associated.

These various ComponentManagers are associated with each scope through
the use of existing Servlet 2.3 Specification features. WebWork ships with
two listeners and a filter that are registered in PetSoar’s web.xml. The App-
licationLifecycleListener implements javax.servlet.ServletContextListener and,
as the specification indicates, is invoked only once for the entire application
life cycle. The other listener, SessionLifecycleListener, is used for the session
scope and implements javax.servlet.http.HttpSessionListener. This listener is
initialized and destroyed whenever a new session in the Web application is
created or invalidated. Finally, we have a filter, RequestLifecycleFilter, which
is mapped to all requests and invoked for every single request.

[web.xml]

<web-app>

...

<listener>

<listener-class>ApplicationLifecycleListener</listener-class>

</listener>

<listener>

<listener-class>SessionLifecycleListener</listener-class>

</listener>

<filter>

<filter-name>container</filter-name>

<filter-class>RequestLifecycleFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>container</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

In each of these three classes, a ComponentManager is created and associ-
ated with the scope. This provides for a unique ComponentManager for every
unique scope possible in the application, and as such allows for proper
resource management on every request to the application server.

Managing Lifecycles and Dependencies of Components 265

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 265

Testing XWork Components

As we described earlier, one of the benefits of IoC is the ease with which we
can test components. Our test case simply acts like the XWork container, so we
don’t need to make any changes to our components in order to test them.
(Another way to look at this is that having developed our component test first,
it needs no additional changes to make it compatible with XWork. We just
update the XML configuration details and deploy our new component.)

Let’s write a test for our Head component:

[HatAware.java]

// name “XxxAware” required by XWork

interface HatAware {

void setHat(Hat hat);

}

[TestHead.java]

266 Chapter 14

JAKARTA AVALON

The Jakarta Avalon project is a server-framework project at Apache consisting
of a number of subprojects.

At the core is Avalon Framework, a collection of common life-cycle
interfaces. Complementing these are some guideline patterns:

◆ Separation of concerns.

◆ All components have an interface/implementation separation.

◆ Avoidance of static methods and singletons.

◆ Takes a container/component view of the world using IoC.

The lifecycle interfaces include initialization, disposal, starting, stopping,
configuration, and dependency management to name a few. The interfaces and
patterns are designed to be used both by component developers and container
implementers.

There are a number of containers available that support the lifecycle
interfaces developed in Avalon. One such container is Avalon Phoenix, which
assists in binding components together from an assembly, configuration,
advanced life-cycle management, remote component management through
JMX, thread pooling, hot deployment, and environments in which components
can be isolated from other components.

http://avalon.apache.org/

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 266

// support class for test case

private class HatMock implements Hat {

private boolean hatRaised = false;

// method from Hat interface

public void raise() {

hatRaised = true;

}

// so we can test

public void isRaised() {

return hatRaised;

}

}

public class TestHead extends junit.framework.TestCase {

public void testHeadRaisesHat() {

// This is what XWork would do...

Head head = new Head();

HatMock hat = new HatMock(); // ...except this bit

head.setHat(hat);

// Now test behavior

head.raiseHat();

// And assert results

assertEquals(“Hat should be raised”, true, hat.isRaised());

}

}

[Head.java]

class Head implements HatAware {

private Hat hat;

public Head() {

}

// from HatAware interface

public void setHat(Hat hat) {

this.hat = hat;

}

// the code we write to make the test pass

public void raiseHat() {

hat.raise(); // woohoo! passing test!

}

}

Managing Lifecycles and Dependencies of Components 267

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 267

Now all we have to do to deploy our tested Head component into XWork is
a simple piece of XML configuration:

<component>

<scope>application</scope>

<class>Beanie</class>

<enabler>HatAware</enabler>

</component>

We don’t need to do anything else for the Head class. WebWork will recognize
that it requires a Hat (and thereby construct a Beanie and set it in the Head
instance) just by virtue of the fact that Head implements the HatAware interface.

Summary

In this chapter, we have seen that components are a very simple yet powerful
way to model a system. Components take the concept of an object model and
extend it to incorporate sophisticated runtime configuration of interactions
between components. This late binding allows us to incorporate implementa-
tions of components that did not exist when the application was first written.

We have learned that Inversion of Control (IoC) separates the concern of
implementing a component from the details of deploying or obtaining it at
runtime. It is quite a subtle reworking of the idea of collaboration between
components and has a number of advantages in terms of enhancing software
testability and reusability.

PetSoar uses an IoC container called XWork, which is part of WebWork, to
manage components and their interactions.

268 Chapter 14

18 463620 Ch14.qxd 10/28/03 8:50 AM Page 268

269

This chapter delves into one of the most crucial layers of the application — the
business logic.

It builds a domain model to encapsulate the data the PetSoar application
encompasses and the business rules surrounding that data.

As well as illustrating how to make use of a persistence layer, Hibernate,
this chapter shows the process of evolving a flexible domain model through
test-first and refactoring techniques.

Considering the Advantages of a Domain Model

Most enterprise applications persist data in a relational database. The role of
the domain model is to provide a set of classes that look similar (but not iden-
tical) to the underlying database schema.

These classes encapsulate code such as JDBC specifics and SQL queries. The
most important advantage of this encapsulation is that business logic is much
easier to write because it deals with plain objects but never the specifics of how
to query the database. Code is more readable and easier to change.

These domain objects are easier to develop against because they are strongly
typed, allowing an IDE to provide features such as code-completion, refactor-
ing, and the ability to find usages of a particular class or field throughout your
code. You do not get these benefits if you are using SQL queries directly.

Defining the Domain Model

C H A P T E R

15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 269

Another benefit of a domain model is that it does not have to map directly
to a database schema. This allows awkward tables and relations to be hidden
from the application code and allows the schema to change without causing a
large impact on the code that depends on it.

The downside to domain models is that they require more up-front work,
because domain classes must be created, and additional code is required to
transfer the state of the classes to and from the database. However, using a
persistence layer such as Hibernate can vastly simplify this, because it handles
the bulk of the work. Also, a tool such as Hibernate can automatically build a
database schema for you, reducing the work even more.

Another perceived downside of using a domain model is performance. An
optimized table join or stored procedure that can modify or query all required
data in one database hit will typically outperform a domain model. However,
this is at the cost of maintainability. In modern environments, faster hardware
is cheap, whereas development costs are expensive. The flexibility of main-
tainable code (with the option to optimize bottlenecks where needed) is a lot
more beneficial than the opposite.

Tackling the Layers

An application is split into layers. Each layer interacts with the layer below it
and offers a level of abstraction. These layers can start as high up as a business
process, going down past the user interface, database schema, operating sys-
tem, and even down as far as the hardware on the motherboard. Thankfully,
each is abstracted well enough so that we need not deal with the hardware
specifics when implementing the business rules for an invoicing system.

As application developers, we can safely ignore many layers. However, lay-
ers we are interested in include the following:

■■ Database schema — The structure of the database

■■ Infrastructure — Nondomain specific code such as logging, security, and
persistence

■■ Domain model — The domain-specific objects and business rules

■■ User interface — The face of the application that the user interacts with

Even those four layers can require a lot of work from the developer. A tough
question is how to break down the work required to complete the layers and
in which order to tackle them.

Comparing a Layer-Driven vs. Feature-Driven Approach
One way to organize the work required for implementing the four layers is to
work on a single layer at a time, completing the entire layer before moving
onto the next one. This is a layer-driven approach (see Figure 15.1). In many

270 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 270

companies adhering to this strategy, a single person or a dedicated team is
assigned to implementing a specific layer. This person or team effectively has
some level of code ownership on the code produced for the assigned layer.

Figure 15.1 Layer-driven approach to implementing the layers

U
SE

R
IN

TE
RF

A
C

E

D
O

M
A

IN
M

O
D

EL

IN
FR

A
ST

RU
C

TU
RE

D
AT

A
B

A
SE

SC
H

EM
A

PR
O

JE
C

T
LI

FE
C

YC
LE

LAYERS

Defining the Domain Model 271

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 271

An alternate approach is to complete a very small part of one layer, a small
part of another layer, until a small part of the application is complete across all
layers. Then repeat the process for each new part of the application. This is a
feature-driven approach. The goal is to implement the functionality of a single
independent story or feature. So, a single person or a small team is assigned to
implement a single feature of the system, and they go through layers and
implement whatever is needed in each layer to accomplish the goal, which is a
functional feature of the system.

The downside to using a layer-driven approach is that it gives you only one
chance to get the implementation right. It is not until the final layer is imple-
mented that an end result is seen, and at this point it is too late to go back and
change other layers. This puts a large emphasis on getting the layers correct
the first time and can often lead to overengineering.

On the other hand, feature-driven approaches allow small parts of applica-
tions to be completed quickly. Focusing on a smaller part of the application
keeps things much simpler and reduces the risk of error. The result can be seen
very early on and any bugs or improvements can be tackled on the next pass
of the layer.

Choosing Bottom Up, Top Down, or Middle Out
As well as having the choice of how much work to do on each layer at a time,
you can choose in which order to tackle them.

A common approach is to work your way up the layers one by one, starting
from the lowest layer (the database schema) to the highest layer (the user inter-
face). This is known as bottom up.

The opposite of this approach is top down. This is where the user interface is
defined first and the layers below are defined one by one until the lowermost
layer is encountered.

Another approach is to start from the domain model. Driven by the user
interface requirements, we create a domain model (middle) and then map it
to the persistence layer (down) and user interface (up). This is known as
middle out.

When using TDD, a top-down or middle-out iterative approach fits nicely.
For each new feature required in the system, a test can be written that allows
the developer to discover which classes are required for the user interface. In
implementing these, the classes for the domain model and infrastructure as
well as the database schema are discovered. This approach results in code
suitable to fulfill a specific user requirement but no more. For each new
requirement, this is repeated, refactoring existing code where applicable.

272 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 272

Figure 15.2 Feature-driven approach to implementing the layers

U
SE

R
IN

TE
RF

A
C

E

D
O

M
A

IN
M

O
D

EL

IN
FR

A
ST

RU
C

TU
RE

D
AT

A
B

A
SE

SC
H

EM
A

PR
O

JE
C

T
LI

FE
C

YC
LE

LAYERS

Defining the Domain Model 273

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 273

All these techniques are valid, depending on the task at hand. Sometimes
the application ends up being implemented using all of these techniques.
When using a feature-driven approach, it is easy to switch which technique is
being used. The important thing is to select the correct technique for the fea-
ture you are going to implement. To make the correct decision, we follow two
basic rules:

■■ Go for the most achievable result — It’s important to make positive
progress when the work starts; otherwise, the team gets lost in details
and tries desperately to overcome the faced problems. There’s the pos-
sibility of making mistakes or compromises just to overcome a problem.
After achieving some tangible results, we’re in the coding flow and it
sounds like we can implement (and we want to implement) the whole
feature piece by piece.

■■ Go for some seeable results first — We might waste a lot of time trying to
implement some infrastructure code and yet, at the end of the day, have
a sense of no progress at all. It’s important to see some results first. See-
ing the output of the program gives a more realistic sense of progress.
An added benefit is that we can show the results to the client while still
developing it and communicate the user story in a more hands-on and
effective manner.

So we might choose to use any of the three techniques to implement a story,
but when making the decision, we keep these two rules in mind.

We might choose to start from the model and the business logic if we think
that it’s where we can make the most progress and see some tangible results.
In this case, tangible results are the output of the test cases, since there’s no
user interface created yet.

We might choose to start from the user interface, perhaps by just prototyp-
ing something or to show the user interface to the client or to get a better
understanding of the story.

We might even use the bottom-up approach in some cases. In some cases,
we might even use a little bit of bottom-up first and then middle-out for the
rest. For example, we might have a legacy database schema, so we use a tool
like MiddleGen to generate the persistable domain model from the database
schema first and then continue implementing the rest of the story by working
on the domain model. MiddleGen can generate the domain model classes
annotated by XDoclet tags from the database tables.

274 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 274

Identifying the Current Goal

Our goal in this chapter is to develop the domain model code to facilitate the
maintenance of pets in the pet store.

It must be possible for pet-store owners to add pets to the online catalog,
which can be viewed by visitors to the site. Because there may be a large num-
ber of pets in the store, it should also be possible for the owner to organize
them into a hierarchical category structure, which visitors to the store can use
for browsing the pet selection.

We choose to use a middle-out approach. In Chapter 16, the domain model
developed in this chapter will be used for implementing the user interface of
the application.

During our journey in this chapter, we learn how to apply TDD techniques to
create the classes representing pets and pet categories and how they are added
and retrieved from the pet store. The developed domain model will be per-
sisted in a relational database using the Hibernate object-relational framework.

So we will first try to implement the domain model and persistence logic for
adding a pet to the store. Then we will retrieve pets from the store. The same
is applicable to categories of pet, too. Then we will associate pets and cate-
gories to each other. The end result is the domain model of the store that is also
persisted in a relational database.

Adding a Pet to the Store

For each pet in the store, we should persist fields such as name, description,
and gender so they can be presented to the customer. Each pet should also be
assigned a category to make it easier for a customer to browse the store if it
contains many items, as shown in Figure 15.3.

To get started, we will create a class called Pet that contains information
about a specific pet and a PetStore class that will act as an entry point to the
contents of the store.

Figure 15.3 Relationships of categories and pets

CATEGORY PET*

Defining the Domain Model 275

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 275

We don’t want PetStore to provide persistence-specific infrastructure code,
as it can pollute the class and couple it to a persistence scheme. So we extract
the persistence logic and put it in a separate object. This technique is generally
known as the Data Access Objects (DAO) pattern. Instead of intermingling the
persistence logic with the domain objects, we perform all the persistence-
related operations in a separate class to handle database activity. This imple-
mentation can be hidden behind an interface allowing persistence
mechanisms to be easily switched at a later date. Domain objects don’t have to
know about the exact persistence mechanism used, and we can easily plug a
mock object implementation. We define a PersistenceManager interface for
this purpose. So Pet is the description of a pet in our pet store, which is itself
modeled as the PetStore class, and PetStore delegates its persistence concerns
to a separate PersistenceManager interface that will have a Hibernate imple-
mentation called HibernatePersistenceManager.

We start with a test. We want to create a Pet and add it to the PetStore:

[TestPetStore.java]

package org.petsoar.pets;

import junit.framework.TestCase;

public class TestPetStore extends TestCase {

public void testAddPet() {

// create a pet

Pet pet = new Pet();

// add pet to store

PetStore petStore = new PetStore();

petStore.addPet(pet);

}

}

But this test is not sufficient. It hasn’t actually tested that the pet has been
stored. There are two ways we can ensure the pet has been persisted.

■■ Allow the PetStore to hit the database and assert that we can then load
the Pet back from the database.

■■ Don’t test the persistence itself; rather, test that the PetStore made the
correct method call to the PersistenceManager.

For our current needs, we’ll use the second option because:

■■ Our unit test should test as little as possible. This test does not test the
PersistenceManager implementation itself, just that the PetStore inter-
acts with it in the correct way.

276 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 276

■■ As the application gets bigger, more and more layers and tests are
added. By testing in isolation, the entire test suite will run much faster.
Having a fast test suite is very important, as it makes it more desirable
to run the tests more often.

■■ We have not written the actual PersistenceManager implementation yet.

To test that the PetStore interacts with the PersistenceManager in the correct
way, we can use a mock implementation of PersistenceManager. For now, all
we want to test is that PersistenceManager.add() is called with the cor-
rect Pet passed as an argument.

The mock PersistenceManager class is created using the dynamic Mock
class from the MockObjects library (described in Chapter 4). This automati-
cally implements the interface of the PersistenceManager. An expectation is
added to the PersistenceManager to assert that the add() method is called
and that the first parameter passed in is the same Pet we declared in the test.
After the code under test has been executed, we verify that the expectations set
up in the mock have been met.

[TestPetStore.java]

import com.mockobjects.dynamic.Mock;

...

public void testAddPet() {

// create a pet

Pet pet = new Pet();

// setup expectation of PersistenceManager

Mock mockPM = new Mock(PersistenceManager.class);

mockPM.expect(“add”, pet);

PetStore petStore = new PetStore();

// pass mock PersistenceManager implementation to petStore

petStore.setPersistenceManager((PersistenceManager)mockPM.proxy())

// add pet to store

petStore.addPet(pet);

// verify expectation has been met

mockPM.verify();

}

Defining the Domain Model 277

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 277

We have a test! Unfortunately, it doesn’t compile, so we need to create the
classes required to allow the code to compile. These are the PersistenceManager,
Pet, and PetStore classes.

[Pet.java]

public class Pet {

}

[PetStore.java]

public class PetStore {

public void setPersistenceManager(PersistenceManager pm) {

// todo

}

public void addPet(Pet pet) {

// todo

}

}

[PersistenceManager.java]

public interface PersistenceManager {

void add(Object obj);

}

Note that the interfaces of these classes were driven by our test — we did
not create them until we had a test that did not compile.

Now that the code compiles, we can run the test. Red Bar!

add(< = Pet@e86da0>) was expected but not called

This error is generated by the MockObjects library. It means it expected the
add() method to be called with a single argument that should equal a specific
Pet instance — but it never was. That is, of course, what we are trying to test.

To allow the PetStore to persist the Pet using the PersistenceManager, it
needs a small modification:

[PetStore.java]

public class PetStore {

private PersistenceManager pm;

public void setPersistenceManager(PersistenceManager pm) {

this.pm = pm;

}

public void addPet(Pet pet) {

278 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 278

pm.add(pet);

}

}

Now we can run the test again. Green Bar!
But we’re not done yet, because there’s no concrete implementation of

PersistenceManager.

Implementing the PersistenceManager Using Hibernate
Recall the interface for PersistenceManager:

[PersistenceManager.java]

public interface PersistenceManager {

void add(Object obj);

}

We now need an implementation that delegates to Hibernate so the object can
be persisted in a relational database. (Hibernate was discussed in Chapter 5.)

But how do we test it? In general it’s desirable to avoid hitting the database
wherever possible because it ties things to a particular persistence implemen-
tation. It’s also very slow, making a quick test-code cycle not so quick! How-
ever, seeing as this actually is a persistence implementation we are testing, it
makes sense to look at the state of the database for the test. Note that as this is
the only class in the system that talks to the database, it will be the only test
case that talks to the database. All the other test cases shall use mock objects.

This is where Hypersonic SQL Database (HSQLDB) makes life easier. It’s an
Open Source relational database written in pure Java that is SQL and JDBC
compliant. What’s great is that it gives you the option of keeping the entire
database in memory, meaning no files or servers are involved (fast!) and the
database contents are forgotten about whenever the connection is closed. It’s
also in-process which cuts inter-process calls. That doesn’t sound all that great
because it defeats the purpose of a database, but for unit tests, it’s a perfect fit.

So, as usual, we begin with a test. Our PersistenceManager should be able to
persist any type of object; however, we already have a Pet class, so we may as
well use that.

[TestHibernatePersistenceManager.java]

public class TestHibernatePersistenceManager extends TestCase {

private HibernatePersistenceManager pm;

protected void setUp() {

pm = new HibernatePersistenceManager();

Defining the Domain Model 279

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 279

}

public void testAddPet() throws Exception {

pm.add(new Pet());

// verify a row exists in the database

assertEquals(1, countRows(“PETS”));

}

}

This test also requires the helper countRows() method.

[TestHibernatePersistenceManager.java]

/** Count rows in a table */

private int countRows(String tableName) throws SQLException {

Connection jdbcConnection = pm.getConnection();

Statement stmt = jdbcConnection.createStatement();

ResultSet rs = stmt.executeQuery(“SELECT COUNT(*) FROM “ + tableName);

rs.next();

return rs.getInt(1);}

At last, we have a test. Of course, it doesn’t compile yet. We need to add
the HibernatePersistenceManager class and implement the add() and
getConnection() methods.

[HibernatePersistenceManager.java]

package org.petsoar.pets;

import net.sf.hibernate.Session;

import java.sql.Connection;

public class HibernatePersistenceManager implements PersistenceManager {

/** Implemented from PersistenceManager interface */

public void add(Object obj) {

// todo

}

public Connection getConnection() {

return null;

}

}

If we run the test now, we get a NullPointerException in countRows().
This is obvious, as the Connection object returned from HibernatePersistence-
Manager’s getConnection() method is null. To tackle this problem, we
need to get a Connection object from Hibernate. Hibernate’s Session class is

280 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 280

responsible for opening a JDBC connection, so we should ask a Session to
return us the underlying Connection.

public Connection getConnection() {

return session.connection();

}

Of course, it doesn’t compile because session is not yet defined. The
HibernatePersistenceManager needs a chance to initialize itself (so it can
connect to the database and start a Hibernate Session) and a chance to clean
itself up properly (so it can commit any transactions and disconnect from the
database).

To initialize the Hibernate Session instance, a Configuration object is
required (a Hibernate-specific class that contains information on how to con-
nect to the database and definitions of how objects map to a relational model),
as is a SessionFactory (that actually creates the Sessions).

[HibernatePersistenceManager.java]

import net.sf.hibernate.SessionFactory;

import net.sf.hibernate.HibernateException;

import net.sf.hibernate.cfg.Configuration;

import java.sql.Connection;

public class HibernatePersistenceManager implements PersistenceManager {

private Session session;

public void init() {

try {

// Load Hibernate configuration

Configuration config = new Configuration();

config.configure();

SessionFactory sessionFactory = config.buildSessionFactory();

session = sessionFactory.openSession();

} catch (HibernateException e) {

throw new RuntimeException(e.getMessage(), e);

}

}

...

}

Now we need only to call the init() method before any persistence code
is run. We call it from the setUp() method of the test case:

[TestHibernatePersistenceManager.java]

public class TestHibernatePersistenceManager extends TestCase {

Defining the Domain Model 281

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 281

private HibernatePersistenceManager pm;

protected void setUp() {

pm = new HibernatePersistenceManager();

pm.init();

}

...

}

To see how we’re progressing, we can run the test. Red Bar!

net.sf.hibernate.HibernateException: /hibernate.cfg.xml not found

at net.sf.hibernate.cfg.Configuration.configure(Configuration.java:673)

Hibernate expects a file named hibernate.cfg.xml in the classpath. This
file contains all the information Hibernate needs for connecting to the data-
base. So, we create the file:

[hibernate.cfg.xml]

<hibernate-configuration>

<session-factory name=”/jndi/PetSoarSessionFactory”>

<!-- properties -->

<property name=”hibernate.connection.driver_class”>

org.hsqldb.jdbcDriver

</property>

<property name=”hibernate.connection.url”>jdbc:hsqldb:.</property>

<property name=”hibernate.connection.username”>sa</property>

<property name=”hibernate.connection.password”></property>

<property name=”hibernate.connection.pool_size”>4</property>

<property name=”hibernate.dialect”>

net.sf.hibernate.dialect.HSQLDialect

</property>

</session-factory>

</hibernate-configuration>

Note that this configuration is useful only for running the tests using HSQL.
For production, we will define another hibernate.cfg.xml file, but this
one contains the information for connecting to a real database such as Oracle
or MySQL or any other relational database. To successfully run the test cases
with the in-memory HSQL database, we make sure this file is placed in the
classpath of the test cases.

NOTE HSQLDB returns an in-memory database when specifying the JDBC URL
“jdbc:hsqldb:.”. This memory will be discarded when the connection is closed.
No external files or servers are required.

282 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 282

Now we can run the test again. Red Bar!

Unknown table name PETS

We forgot to create the PETS table and its columns. But we don’t need to
issue any SQL CREATE TABLE statement for creating the table. We can use
Hibernate’s SchemaUpdate class. Hibernate can generate the database schema
for us. It does that by looking at the xml mapping files. So we refactor init()
and invoke SchemaUpdate from there.

[TestHibernatePersistenceManager.java]

import net.sf.hibernate.tool.hbm2ddl.SchemaUpdate;

public class HibernatePersistenceManager implements PersistenceManager {

...

public void init() {

try {

// Load Hibernate configuration

Configuration config = new Configuration();

config.configure();

// update database schema if required

try {

new SchemaUpdate(config).execute(false);

} catch (SQLException e) {

log.fatal(“Cannot update schema”,e);

throw new RuntimeException(“Cannot update schema”,e);

}

SessionFactory sessionFactory = config.buildSessionFactory();

session = sessionFactory.openSession();

} catch (HibernateException e) {

throw new RuntimeException(e.getMessage(), e);

}

}

}

SchemaUpdate can also be invoked off-line via the command line, and
there’s even an Ant task for incorporating it with your build. Because our
test database is an in-memory database, we don’t need to use the off-line
mode. Instead, we call it during initialization of HibernatePersistenceManager
before any other persistence code is executed. We also need to modify
hibernate.cfg.xml like this:

[hibernate.cfg.xml]

<hibernate-configuration>

<session-factory name=”/jndi/PetSoarSessionFactory”>

Defining the Domain Model 283

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 283

...

<mapping resource=”org/petsoar/pets/Pet.hbm.xml”/>

</session-factory>

</hibernate-configuration>

A <mapping/> element must be added to the hibernate.cfg.xml file.
This element tells Hibernate which mapping files to use. Hibernate can create
the PETS table and its columns by looking at this mapping file. A mapping file
for a class is a file placed in the classpath that follows the package-name
/classname.hbm.xml naming convention.

Now that we’ve invoked SchemaUpdate, we can expect to have a table in
place when the test starts running. We’re ready to run the test again. Red Bar!

This is because Hibernate can’t find the Pet.hbm.xml mapping file. To do
this, we can either manually create this XML file or mark the class with addi-
tional JavaDoc tags and let XDoclet do the hard work instead (see Chapter 9).

A primary key also needs to be added to the Pet class so it can be uniquely
identified.

[Pet.java]

package org.petsoar.pets;

/**

* @hibernate.class table=”PETS”

*/

public class Pet {

private long id;

/**

* @hibernate.id column=”PETID” generator-class=”vm.long”

*/

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

}

After adding the JavaDoc tags to the Pet class, the hibernatedoclet target of
the build must be run — this generates the appropriate Pet.hbm.xml
mapping file. Running the test now yields another Red Bar:

expected:<1> but was:<0>

284 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 284

The countRows() method returned zero; that means no row was found in
the PETS table while we were expecting that a row should be due to the call to
the add() method. We’re making progress, and the Red Bar has reassured us
that our test is actually testing properly.

We need to now implement the add() method properly. We implemented it
before in the easiest possible way, by just putting a to-do comment in it!
In Chapter 5, we see that to access the Hibernate object store, we use the
Session interface. To add something to the object store, we need only to call
session.saveOrUpdate().

[HibernatePersistenceManager.java]

package org.petsoar.pets;

import net.sf.hibernate.Session;

import net.sf.hibernate.HibernateException;

public class HibernatePersistenceManager implements PersistenceManager {

...

private Session session;

public void add(Object obj) {

try {

session.saveOrUpdate(obj);

} catch (HibernateException e) {

throw new RuntimeException(“Could not persist object :”

+ e.getMessage(), e);

}

}

}

The add() method simply calls saveOrUpdate() and inserts a new
record to the database if the record is new or updates the database if the record
already exists.

TI P The Session.saveOrUpdate() method throws a checked exception:
HibernateException. However, this is implementation specific, and adding this
to the method signature of PersistenceManager.add() would mix
implementation specifics into the interface. For this reason, the exception is
caught and rethrown as an unchecked RuntimeException.

You may choose another approach for handling exceptions, such as rethrowing
a custom exception, logging, invoking a callback for a recovery procedure, or
using checked exceptions throughout your implementation. For every opinion
on “proper” exception handling, you’ll find a counterargument. We’ve just gone
for the simplest thing.

Defining the Domain Model 285

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 285

We need also to ensure that the Hibernate session is cleaned up properly.
This involves flushing all unwritten data, committing the transaction, and
closing the session. We add a new method to HibernatePersistenceManager
and consequently to the PersistenceManager interface.

[HibernatePersistenceManager.java]

public void dispose() {

try {

try {

session.flush();

session.connection().commit();

} finally {

session.close();

}

} catch(Exception e) {

throw new PersistenceException(“Couldn’t close the session”, e);

}

}

The test can be modified to accommodate this extra method by adding a
call to the dispose() method in the tearDown() method. So, whenever
we’re finished executing a test case, the session is politely freed. By using
the tearDown() method of JUnit (which is always run before and after each
test — regardless of the result), an in-memory database can be created and
destroyed. By closing the database connection in the tearDown() method,
we make sure the database resources are freed and the next test executed
acquires a fresh database connection.

[TestHibernatePersistenceManager.java]

protected void tearDown() throws Exception {

// end transaction and free up persistence manager.

pm.dispose();

}

Our test is passing. That means that a row is being added to the table when
we call PersistenceManager.add(). That’s good, but we need a bit more
reassurance that it is actually persisting the object state correctly.

We extend our unit test to verify that the correct row, not just any row, has
been added to the table after the HibernatePersistenceManager.add()
method has been called. Here’s the original test to refresh your memory:

[TestHibernatePersistenceManager.java]

public void testAddPet() throws Exception {

// add an object to the database

286 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 286

pm.add(new Pet());

// verify a row exists in the database

assertEquals(1, countRows(“PETS”));

}

To improve this, we extend the test so that it creates a table with more than
one column and verifies that each column contains the correct data, as speci-
fied by fields of the object to be persisted.

[TestHibernatePersistenceManager.java]

public void testAddPet() throws Exception {

// sanity check

assertEquals(0, countRows(“PETS”));

// set some fields

Pet pet = new Pet();

pet.setName(“Garfield”);

// add an object to the database

pm.add(pet);

// verify a row exists in the database

assertEquals(1, countRows(“PETS”));

// verify row contains correct values

Connection jdbcConnection = pm.getConnection();

Statement stmt = jdbcConnection.createStatement();

ResultSet rs = stmt.executeQuery(“SELECT * FROM PETS WHERE PETID = “

+ pet.getId());

rs.next();

assertEquals(“Garfield”, rs.getString(“NAME”));

}

Once again, the test won’t compile because extra fields need to be added to
the Pet class. Let’s do that now:

[Pet.java]

package org.petsoar.pet;

/**

* @hibernate.class table=”PETS”

*/

public class Pet {

private long id;

private String name;

Defining the Domain Model 287

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 287

/**

* @hibernate.id column=”PETID” generator-class=”increment”

*/

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

/**

* @hibernate.property column=”NAME”

*/

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}

Now we can run the test again. Green Bar!
Hibernate has kicked into action and has automatically mapped the fields of

the Pet class to the columns in the database. It just works!
We now have a PersistenceManager implementation capable of adding

plain Java objects to a table in the database.

Where We Are
The components are now in place for adding a Pet to the store. Looking back,
we have a Pet class containing the details of a Pet and a PetStore component
that allows the store’s contents to be modified. The actual code for persistence
has been abstracted away from the PetStore and placed into a generic
PersistenceManager component.

Once we have a PetStore instance, adding a new Pet is as simple as:

Pet pet = new Pet();

pet.setName(“Garfield”);

petStore.add(pet);

Now is a good time to go back and look at the classes and tests we have just
created. Notice how all the Hibernate-related code is placed in one class.
Notice the simplicity of the other classes.

288 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 288

Retrieving Pets

Of course, it’s pointless adding pets to the store unless they can later be
retrieved.

To get the ball rolling, a test can be added to TestHibernatePersistenceManager
that adds some pets and tests that they can be retrieved properly:

[TestHibernatePersistenceManager.java]

public void testRetrievePets() throws Exception {

// add some pets

Pet pet1 = new Pet();

pet1.setName(“Garfield”);

pm.add(pet1);

Pet pet2 = new Pet();

pet2.setName(“Odie”);

pm.add(pet2);

// verify pets are in database

List pets = pm.findAll();

assertEquals(2, pets.size());

assertEquals(“Garfield”, ((Pet)pets.get(0)).getName());

assertEquals(“Odie”, ((Pet)pets.get(1)).getName());

}

This skeleton for the test is in place. A couple of Pets are added. We then call
the findAll() method to retrieve a List of these creatures and assure that the
List contains what we expect it to.

As usual, the test doesn’t compile yet — there’s no findAll() method.
This can quickly be added to the HibernatePersistenceManager class and
PersistenceManager interface.

[PersistenceManager.java]

public interface PersistenceManager {

void add(Object obj);

List findAll();

}

[HibernatePersistenceManager.java]

public class HibernatePersistenceManager implements PersistenceManager {

...

Defining the Domain Model 289

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 289

public List findAll() {

return null;

}

}

The test compiles but now results in a NullPointerException because
findAll() returns null. In order to implement this method, we need to pro-
vide Hibernate with a query string using the Hibernate Query Language.

[HibernatePersistenceManager.java]

public List findAll() {

try {

return session.find(“FROM pet IN CLASS org.petsoar.pets.Pet”);

} catch (HibernateException e) {

throw new RuntimeException(e.getMessage(), e);

}

}

This simple query says, “return all objects of class org.petsoar.pets.Pet.”
Now the test passes with a Green Bar!

Now that the generic PersistenceManager is capable of retrieving objects
that have been added, the PetStore needs to provide the domain specific
getPets() method.

Thanks to our previous test, we are confident that the PersistenceManager
implementation is capable of retrieving all Pets using the findAll()method.
As our tests are to be rerun often, it will be immediately apparent if this is no
longer the case.

With this assurance, to test the PetStore we can avoid hitting the database
altogether and use a mock object instead. This dramatically reduces the time to
run the unit tests as the application gets larger.

The following test is added:

[TestPetStore.java]

public void testRetrievePets() {

// setup expectation of PersistenceManager

Mock mockPM = new Mock(PersistenceManager.class);

mockPM.expectAndReturn(“findAll”, Collections.EMPTY_LIST);

PetStore petStore = new PetStore();

// pass mock PersistenceManager implementation to petStore

petStore.setPersistenceManager((PersistenceManager)mockPM.proxy());

List result = petStore.getPets();

assertTrue(result.isEmpty());

290 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 290

// verify expectation has been met

mockPM.verify();

}

This creates a mock PersistenceManager implementation and sets an expec-
tation stating that findAll() should be called on it. Note that the method
expectAndReturn() is used for this, as the findAll() method is not
void — it needs to know what it should return when it is called. The second
parameter to expectAndReturn() is the return value. In our test, we are
simply providing an empty list.

Next, the PetStore instance is created and passed the mock PersistenceMan-
ager before we call the method we want to test — getPets(). Finally, we
check that the call returned the empty list is set up on the mock and that the
mock’s expectations have been met.

To get the test to compile, a method needs to be added to PetStore:

[PetStore.java]

package org.petsoar.pets;

import java.util.List;

public class PetStore {

private PersistenceManager pm;

public void setPersistenceManager(PersistenceManager pm) {

this.pm = pm;

}

public void addPet(Pet pet) {

pm.add(pet);

}

public List getPets() {

return null;

}

}

Before the test can pass, we need to implement this new method:

[PetStore.java]

public List getPets() {

return pm.findAll();

}

Green Bar!

Defining the Domain Model 291

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 291

TI P In many cases, it’s tempting to skip the failing test by writing the test and
implementation in one step. Although this may save a small amount of time
(typically only a few seconds — not much longer than it takes to run the test), it
should be avoided because a failing test acts as an additional test — it tests the
test. Without a failing test, there is no assurance that the test is testing what it
should be.

Retrieving a Single Pet
As well as retrieving all the Pets in the PetStore, it is essential to retrieve a sin-
gle Pet based on its unique identifier.

As usual, we shall implement this by starting out with a test. A simple way
to test it is to add two Pets, obtain their IDs, and test that the same Pets can be
retrieved using the IDs.

[TestPersistenceManager.java]

public void testGetById() throws Exception {

// add two pets

Pet pet1 = new Pet();

pet1.setName(“Garfield”);

pm.add(pet1);

Pet pet2 = new Pet();

pet2.setName(“Odie”);

pm.add(pet2);

// get the unique ids for the added pets

long id1 = pet1.getId();

long id2 = pet2.getId();

// verify names match ids

assertEquals(“Garfield”, ((Pet)pm.getById(id1)).getName());

assertEquals(“Odie”, ((Pet)pm.getById(id2)).getName());

}

To get the test to compile, a method needs be added to the PersistenceManager
interface and HibernatePersistenceManager class.

[PersistenceManager.java]

public interface PersistenceManager {

void add(Object obj);

List findAll();

Object getById(long id);

292 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 292

}

[HibernatePersistenceManager.java]

public class HibernatePersistenceManager implements PersistenceManager {

...

public Object getById(long id) {

return null;

}

}

Running the test yields the Red Bar. A NullPointerException is thrown.
Hibernate provides the simple load() method for retrieving a single

object. It is passed a java.lang.Class to identify which type of object is to be
loaded and the unique identifier:

[HibernatePersistenceManager.java]

public Object getById(long id) {

try {

return session.load(Pet.class, new Long(id));

} catch (HibernateException e) {

throw new RuntimeException(e.getMessage(), e);

}

}

Running the test again gives the Green Bar!
The PetStore class needs the ability to allow its clients to look up a Pet by a

unique ID. To test this, we can simply provide a mock PersistenceManager to
the PetStore and verify that it is called properly from the PetStore.

[TestHibernatePersisenceManager.java]

public void testGetPetById() {

Mock mockPM = new Mock(PersistenceManager.class);

mockPM.expectAndReturn(“getById”, new Long(99L), new Pet());

PetStore petStore = new PetStore();

// pass mock PersistenceManager implementation to petStore

petStore.setPersistenceManager((PersistenceManager)mockPM.proxy());

Pet pet = petStore.getPetById(99L);

assertNotNull(pet);

mockPM.verify();

}

Defining the Domain Model 293

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 293

The expectAndReturn() method takes three parameters. The first is the
name of the method that is expected to be called. The second is what it expects
to receive as a parameter when called. The third is the value it should return.

Again, the test fails, so we’ll need to implement the new method:

[PetStore.java]

public class PetStore {

...

public Pet getPetById(long id) {

return (Pet)pm.getById(id);

}

}

Green Bar! It’s now easy to retrieve all Pets from the PetStore or just a spe-
cific Pet by its ID. One last thing before we’re finished here. The test can be
refactored to remove duplication between the test methods by initializing the
PetStore and mock object in the setUp() method.

[TestPetStore.java]

public class TestPetStore extends TestCase {

private Mock mockPM;

private PetStore petStore;

protected void setUp() {

mockPM = new Mock(PersistenceManager.class);

petStore = new PetStore();

petStore.setPersistenceManager((PersistenceManager)mockPM.proxy());

}

public void testAddPet() {

// create a pet

Pet pet = new Pet();

// setup expectation of PersistenceManager

mockPM.expect(“add”, pet);

// add pet to store

petStore.addPet(pet);

// verify expectation has been met

mockPM.verify();

}

public void testGetPets() {

// setup expectation of PersistenceManager

294 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 294

mockPM.expectAndReturn(“findAll”, Collections.EMPTY_LIST);

List result = petStore.getPets();

assertTrue(result.isEmpty());

// verify expectation has been met

mockPM.verify();

}

public void testGetPetById() {

mockPM.expectAndReturn(“getById”, new Long(99L), new Pet());

Pet pet = petStore.getPetById(99L);

assertNotNull(pet);

mockPM.verify();

}

}

Where We Are
We now have a very clean API to the PetStore. Look at the interface of the
members of the PetStore class:

[PetStore.java]

public class PetStore {

public void addPet(Pet pet) { ... }

public List getPets() { ... }

public Pet getPetById(long id) { ... }

}

Pet itself is just a plain old Java object with getters and setters. The PetStore
is a simple class. Backing the PetStore is a PersistenceManager that can be used
by other components for persisting other types of objects. The resulting code is
very clean.

It’s time to look back at the code and remove any duplication and improve
it. One improvement we can make is to remove the countRows() method
from the TestHibernatePersistenceManager and replace it with a call to the
findAll() method of PersistenceManager. So, we refactor the following
code:

[TestHibernatePersistenceManager.java]

public void testAddPet() throws Exception {

// sanity check

Defining the Domain Model 295

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 295

assertEquals(0, countRows(“PETS”));

// set some fields

Pet pet = new Pet();

pet.setName(“Garfield”);

// add an object to the database

pm.add(pet);

// verify a row exists in the database

assertEquals(1, countRows(“PETS”));

// verify row contains correct values

Connection jdbcConnection = pm.getConnection();

Statement stmt = jdbcConnection.createStatement();

ResultSet rs = stmt.executeQuery(“SELECT * FROM PETS WHERE PETID = “

+ pet.getId());

rs.next();

assertEquals(“Garfield”, rs.getString(“NAME”));

}

We replace the countRows() call with a call to findAll() or getById().
Needless to say, we can also remove countRows() altogether, since it’s no
longer used.

[TestHibernatePersistenceManager.java]

public void testAddPet() throws Exception {

// sanity check

assertEquals(0, countRows(“PETS”));

// set some fields

Pet pet = new Pet();

pet.setName(“Garfield”);

// add an object to the database

pm.add(pet);

// verify a row exists in the database

pet = pm.getById(pet.getId());

assertNotNull(pet);

// verify row contains correct values

assertEquals(“Garfield”,pet.getName());

}

296 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 296

Persisting the Categories

When we started this chapter, we mentioned that the store needs the capabil-
ity to categorize Pets. A category class can be introduced for this.

Before we begin modifying the PetStore, we must ensure that the Hibernate-
PersistenceManager is capable of persisting classes other than Pet.

[TestHibernatePersistenceManager.java]

public void testAddAndRetrieveCategories() throws Exception {

Category category = new Category();

category.setName(“Dogs”);

pm.add(category);

// verify objects are in database

List categories = pm.findAll();

assertEquals(1, categories.size());

assertEquals(“Dogs”, ((Category)categories.get(0)).getName());

}

In writing the test, it becomes apparent that the findAll() method is not
sufficient because it must be able to distinguish whether you want to find all
the Pets or Categories. We need to change that — but not just yet, because the
code is not compiling (it is very hard to refactor code when it doesn’t compile).

To get the test compiling, we need to add a Category class with a name
property. We will speed up slightly now and add the unique identifier and
Hibernate mapping data at the same time.

[Category.java]

package org.petsoar.categories;

/**

* @hibernate.class table=”CATEGORIES”

*/

public class Category {

private long id;

private String name;

/**

* @hibernate.id column=”CATEGORYID” generator-class=”increment”

*/

public long getId() {

Defining the Domain Model 297

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 297

return id;

}

public void setId(long id) {

this.id = id;

}

/**

* @hibernate.property column=”NAME”

*/

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}

Now that the test compiles, we can look at how we can modify the findAll()
method so we can narrow the list down to that of a particular type.

The simplest thing would be to pass an argument stating which class to
return. This could be a java.lang.String or java.lang.Class. We will go with the
latter because it’s less prone to error (the compiler will catch typos).

[TestHibernatePersistenceManager.java]

public void testAddAndRetrieveCategories() throws Exception {

Category category = new Category();

category.setName(“Dogs”);

pm.add(category);

// verify objects are in database

List categories = pm.findAll(Category.class);

assertEquals(1, categories.size());

assertEquals(“Dogs”, ((Category)categories.get(0)).getName());

}

To get the test to compile, the signature of findAll() must be changed
throughout the code to take another argument of type java.lang.Class.

[PersistenceManager.java]

public interface PersistenceManager {

...

298 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 298

List findAll(Class cls);

...

}

[HibernatePersistenceManager.java]

public class HibernatePersistenceManager implements PersistenceManager {

...

public List findAll(Class cls) {

try {

return session.find(“FROM pet IN CLASS “ + cls.getName());

} catch (HibernateException e) {

throw new RuntimeException(e.getMessage(), e);

}

}

...

}

There is also a call to this method in the PetStore class. This can have the
appropriate parameter passed.

[PetStore.java]

public class PetStore {

// ...

public List getPets() {

return pm.findAll(Pet.class);

}

// ...

}

TI P Many modern IDEs provide a feature for performing refactorings like this.
Investigate your environment — it can save you a lot of time.

The test now compiles. We run it and get a Red Bar!
Unexpectedly, there are now two failing tests. Obviously, we have not

implemented the code to allow the test we just wrote to pass. However, in
introducing the new parameter, we’ve broken one of the existing tests.

TestPetStore.testRetrievePets():

wrong number of arguments expected:<0> but was:<1>

Defining the Domain Model 299

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 299

This is because we also need to modify the mock object to expect a parame-
ter when called:

[TestPetStore.java]

public void testRetrievePets() {

// setup expectation of PersistenceManager

mockPM.expectAndReturn(“findAll”, Pet.class, Collections.EMPTY_LIST);

List result = petStore.getPets();

assertTrue(result.isEmpty());

// verify expectation has been met

mockPM.verify();

}

We can run the tests again — another Red Bar, but this time with only one
failing test.

Unmapped class: org.petsoar.pets.Category

Unfortunately, even though we’ve marked the Category class with
Hibernate doclet tags, the Configuration does not know about the class. This is
resolved by modifying the hibernate.cfg.xml file:

[hibernate.cfg.xml]

<hibernate-configuration>

<session-factory name=”/jndi/PetSoarSessionFactory”>

...

<mapping resource=”org/petsoar/pets/Pet.hbm.xml”/>

<mapping resource=”org/petsoar/categories/Category.hbm.xml”/>

</session-factory>

</hibernate-configuration>

Now we can run the test again. Green Bar! Our PersistenceManager is now
capable of storing and retrieving different types of classes.

This generality should also be applied to the PersistenceManager
.getById() method, and the Category-specific classes can be added to
PetStore. We will skip the details of implementing this because the same tech-
niques apply that have been previously illustrated.

Where We Are
The PetStore now supports storage of Pets and Categories:

300 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 300

[PetStore.java]

public class PetStore {

public void addPet(Pet pet) { ... }

public List getPets() { ... }

public Pet getPetById(long id) { ... }

public void addCategory(Category category) { ... }

public List getCategories() { ... }

public Category getCategoryById(long id) { ... }

}

Still, the implementation of PetStore is remarkably simple, and the Pet and
Category classes are plain old Java objects.

The next step is allowing Category to contain Pets and a Pet to be assigned
to a Category.

Implementing the Category-Pet Relation
We should be able to group Pets in a parent Category. As usual, we start by
writing the test for this scenario:

[TestHibernatePersistenceManager.java]

public void testAddPetsToCategory() throws Exception {

Category category = new Category();

category.setName(“yy”);

pm.save(category);

Pet pet = new Pet();

pet.setName(“xx”);

category.addPet(pet);

// verify category contains the pet

assertEquals(1, category.getPets().size());

assertTrue(category.getPets().contains(pet));

// verify pet has a reference to the parent category

assertEquals(category, pet.getCategory());

}

Here, we first create a new Category and save it; then a Pet is created and
added to the Category and saved. We verify that the Pet was successfully
added.

Defining the Domain Model 301

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 301

But this code does not update the database at all, so we enhance the test to
do that, too.

[TestHibernatePersistenceManager.java]

public void testAddPetsToCategory() throws Exception {

Category category = new Category();

category.setName(“yy”);

pm.save(category);

Pet pet = new Pet();

pet.setName(“xx”);

category.addPet(pet);

// verify category contains the pet

assertEquals(1, category.getPets().size());

assertTrue(category.getPets().contains(pet));

// verify pet has a reference to the parent category

assertEquals(category, pet.getCategory());

// now save it

pm.save(pet);

// retrieve them from the database

category= (Category)pm.getById(Category.class, category.getId());

pet= (Pet)pm.getById(Pet.class, pet.getId());

// verify category contains the pet

assertEquals(1, category.getPets().size());

assertTrue(category.getPets().contains(pet));

// verify pet has a reference to the parent category

assertEquals(category, pet.getCategory());

}

Just to make sure the database content is also correct, we load the two
objects by calling getById() and verify it again. But there’s still a problem. It
doesn’t yet compile, since there’s no addPet in Category and no getCategory in
Pet either.

[Category.java]

public class Category {

public void addPet(Pet pet) {

//todo

302 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 302

}

public List getPets() {

return null;

}

...

}

Pet.java

public class Pet {

public Category getCategory() {

return null;

}

...

}

Now it compiles. We can run the test. Red Bar! That’s because getPets
returns null, so we correct it.

[Category.java]

public class Category {

private List pets = new ArrayList();

public void addPet(Pet pet) {

//todo

}

public List getPets() {

return pets;

}

...

}

We can run the test again. Red Bar!

junit.framework.AssertionFailedError: expected:<1> but was:<0>

That’s what we expected because addPet was not implemented correctly. So
we change addPet.

[Category.java]

public void addPet(Pet pet) {

getPets().add(pet);

}

Defining the Domain Model 303

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 303

We run the test again and Red Bar!

junit.framework.AssertionFailedError:

expected:<org.petsoar.categories.Category@a23610> but was:<null>

So, the second assertion fails. Although Category does contain the new Pet,
the reference from Pet to its parent Category is null. We modify addPet() and
set the reference.

[Category.java]

public void addPet(Pet pet) {

getPets().add(pet);

pet.setCategory(this);

}

But it doesn’t compile yet because there’s no setCategory() method in
class Pet.

[Pet.java]

public void setCategory(Category category) {

}

Still the same Red Bar! That’s because setCategory is not implemented. We
add a property and implement the setter method correctly.

[Pet.java]

public class Pet {

private Category category;

public void setCategory(Category category) {

this.category=category;

}

...

}

Now the first two assertions should pass and they do, but we get a Red Bar!
The third assertion failed. There’s a problem in the mapping part. We now
need to define a mapping between Category and Pet for Hibernate. We can do
this using the XDoclet tags in the Category and Pet classes:

[Category.java]

public class Category {

/**

304 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 304

* @hibernate.list table=”PETS” lazy=”true” cascade=”all”

* @hibernate.collection-one-to-many class=”org.petsoar.pets.Pet”

* @hibernate.collection-key column=”CATEGORY”

*/

public List getPets() {

return pets;

}

...

}

[Pet.java]

public class Pet {

/**

* @hibernate.many-to-one cascade=”none” column=”CATEGORY”

*/

public Category getCategory() {

return null;

}

...

}

The specified @hibernate.list tag tells Hibernate that it’s a 1-n relation and
that the other end of the relation is stored in the PETS table. Note the lazy
parameter of this tag. Setting its value to true means the Pets of a Category are
not loaded when the Category is loaded from the database; rather, Hibernate
waits until getPets() is called and then loads the associated Pets. The
@hibernate.collection-one-to-many tag is there to tell Hibernate about the type
of the contents of the List. Without this tag, Hibernate doesn’t know objects of
which type should be created when the List is loaded into memory from the
database. The column parameter of the @hibernate.collection-key tag specifies
the name of the foreign key column in the PETS table that references the par-
ent Category in the CATEGORIES table.

The getCategory()method of class Pet is also tagged, but with the many-
to-one Hibernate tag. The relation is modeled in the database with a foreign
key in the PETS table holding the primary key of the parent category in it from
the CATEGORIES table. The cascade parameter is important here. The value of
none here means upon inserting, saving, or deleting a Pet, the associated
Category is left untouched. A value of delete would mean “delete the asso-
ciated Category when the Pet is deleted,” which is obviously not something
we want to happen. A value of save would mean save the associated
Category, too, but that’s not what we need either, because we want the parent
Category to not change when the Pet gets edited.

Defining the Domain Model 305

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 305

We are now ready to run the test again. Red Bar!

net.sf.hibernate.PropertyNotFoundException: Could not find a setter for

property pets in class org.petsoar.categories.Category

For any persistable property, there should also be a setter method specified.
We add the method.

[Category.java]

public void setPets(List pets) {

this.pets = pets;

}

We also add the setter method for Pet’s category property. We give the test
another run and finally, Green Bar!

So now we’re sure that the two ends of the association between Pet and
Category are correct, and they are correctly saved and loaded from the data-
base. We follow this procedure for other methods such as removePet(). They
are not shown here because the procedure looks quite similar to this one.

We should also support grouping of Categories under another Category.
This is easily accomplished by adding a categories property of type
java.util.List and the familiar add() and remove() methods, plus another
property to represent the parent Category.

Where We Are
We can group Pets in Categories now. We changed both classes to contain
information about this association between the two, and the association per-
sists in the database successfully, along with the rest of the fields. We can also
group Categories under a parent Category and persist it.

Performance and Maintainability Considerations

We have a clean domain model that can load and save itself from and to a data-
base successfully. By using Hibernate and domain objects, the client code is
cleaner than a solution that loads raw data from the database. The domain
objects can encapsulate business rules as well as data. Also, they give us the
benefit of other OO features such as polymorphism. Instead of working with
raw data, we’re working with clean and high-level objects representing data.

But couldn’t we do the persistence of the domain objects with a lesser
amount of code in straight JDBC instead of using Hibernate? Does it perform
well? Couldn’t we get a better performance by issuing SQL statements
directly?

306 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 306

We could write the persistence logic with the same amount of code or per-
haps even less code by just using JDBC and executing SQL statements directly.
The performance factor is debatable, though, because both solutions have
room for lots of optimizations.

The reason we chose to use an object-relational framework like Hibernate is
that besides writing the same amount of code for the basic persistence logic, it
offers a lot of useful possibilities, too. Let’s list them here:

■■ We don’t have to create the database schema by hand. We let Hiber-
nate’s SchemaUpdater do that for us. This is a nice added benefit for a
TDD scenario. We have less hesitation when refactoring the domain
model if we don’t have to keep the schema up to date manually.

■■ By using the XDoclet tags, we have a very nice way of documenting the
mapping from classes to database tables. It’s more readable this way. A
programmer can easily find the mapping for a class or property.

■■ Because Hibernate takes care of the schema update and mapping from
the model to the database, we can easily change the underlying data-
base. If you haven’t noticed, we actually used this feature! We used the
in-memory HSQL database for the tests, but we certainly can use a real
database such as Oracle or MySQL for running the PetSoar site.

■■ We wrote a single HibernatePersistenceManager class, and it performs
persistence for any kind of object, be it Pet, Category, or whatever. We
don’t have to write specific DAO classes for each type. Now that
HibernatePersistenceManager, is written we can focus solely on the
business logic of the application.

■■ By pushing a switch, we can ask Hibernate to load multiple dependent
objects with a single SQL SELECT statement. All we have to do is add
an outer-join= “true” to the @hibernate.list tag. It tells Hibernate to mix
multiple SQL queries into a single query that uses SQL’s OUTER JOIN.

■■ We can easily cache the objects loaded from the database in the mem-
ory. By caching all Pets and Categories, we can significantly reduce the
need for any database access and improve the performance. We just
add a @hibernate.jcs-cache tag to the classes that should be cached, and
Hibernate, under the covers, handles caching instances of the class by
using Apache’s JCS package. JCS is a flexible framework for caching
objects. By setting up its configuration file, we can control the exact
caching behavior, for example how long the objects should be cached in
memory and so on.

■■ Lazy loading is another out-of-the-box benefit of Hibernate. We can con-
figure Hibernate to lazily load objects. By defining a proxy, we can tell
Hibernate to load the contents of an object from the database only when

Defining the Domain Model 307

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 307

one of its accessor methods is called. Defining a proxy is as simple as
adding a proxy parameter to the @hibernate.class tag. For example, to
lazy-load Pet, we just add a @hibernate.class proxy=”org.petsoar.pets.Pet”
and Hibernate takes care of lazy loading it!

■■ Another important and useful lazy-loading strategy could be lazily
loading dependent objects of an object. For example, we could improve
performance by not loading Pets of a Category when the Category is
loaded from the database. Only when the getPets() method of Cate-
gory is called, Pets of that Category are loaded. This is also easy to
implement with Hibernate. We just add a @hibernate.list
lazy=”true” to the getPets() method. Under the covers, Hibernate
intercepts the getPets() call and loads the associated Pets. Note that
it’s all done transparently by Hibernate. We don’t have to change any
code to take advantage of this performance optimization; no specific
DAO code is written.

We can effectively do TDD and we can easily optimize our database perfor-
mance by using the right Hibernate configuration elements.

Summary

In this chapter, we created the domain model for the application. The domain
model consists of a PetStore class that has several methods for saving and
retrieving Pet and Category classes. PetStore does its job by delegating
the hard persistence job to a separate PersistenceManager interface. We
implemented a default implementation of PersistenceManager by creating a
HibernatePersistenceManager, which persists objects by using the Hibernate
OR mapping framework.

We learned how to configure HibernatePersistenceManager to work with
the relational database by using Hibernate’s Configuration class and the hiber-
nate.cfg.xml file. We configured it to use the in-memory HSQL database for the
test. Using HSQL made it possible for us to run all the tests dealing with data-
base access in a fraction of a second. We also learned how and where to open
and close Hibernate Session objects.

We then expanded Pet and Category classes and implemented the code for
grouping some Pets under a Category and also grouping some Categories
under a parent Category.

For implementing these classes, we used TDD techniques. Using TDD led
to a very clean and tested API for the domain model and the persistence
framework.

308 Chapter 15

19 463620 Ch15.qxd 10/28/03 8:50 AM Page 308

309

In this chapter, we will explore the process of connecting the domain model
presented in Chapter 15 to the user interface. We will do this, as we did with
the domain model, using a TDD process. In PetSoar, the MVC framework we
have chosen to use is OpenSymphony WebWork version 2.0. We chose this
framework because of its rich features as well as its ability to make testing of
actions very easy. However, the concepts presented here can most likely be
applied toward any MVC framework or even toward your own home-brewed
design.

While we cannot go over every Web interface in PetSoar, we will discuss a
common situation most developers are familiar with: the need to create, read,
update, and delete domain objects (CRUD). Given that we’re writing a Pet-
Store, there is no better domain object to choose for this task than the Pet
model. We will start by adding pets; then we’ll move on to viewing those
newly created pets, building a way to update the Pets, and, finally, building a
way to delete the Pets. When all is said and done, you should have a strong
grasp of using TDD in a Web environment using WebWork or any other tech-
nology of your choosing.

Creating a Web-Based Interface

C H A P T E R

16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 309

Adding a Pet

Using the persistence model and domain object developed in the Chapter 15,
we will now build a way for pets to be added to the PetStore by building a
WebWork action that will house the business logic needed to implement this
requirement. One of the nice things about WebWork is that it is very easy to
use in TDD development. We will first look at the business logic and then the
HTML for the Web interfaces. Without further ado, we will write the first tests.

Creating the AddPet Action
Before a unit test can actually be coded, we need to sort out what we want to
achieve and, as such, what we need to test. Specifically, we need to retrieve a name
from a field on the Web page and create a Pet using that value. Let’s just write down
our expectations and work from there. Remember that we don’t need to test
that the Pet is actually added to the database. We can just test that the
PetStore.addPet() method is called, via a mock. The real PetStore is
already tested elsewhere and assumed to work perfectly! Here’s a test that
shows what we’re expecting to do:

public void testAddPet() throws Exception {

// create the mock PetStore

Mock mockPetStore = new Mock(PetStore.class);

PetStore petStore = (PetStore) mockPetStore.proxy();

// create pet that should be added to the pet store

Pet expectedPet = new Pet();

expectedPet.setName(“bob”);

mockPetStore.expect(“savePet”, expectedPet);

// create an action and give it the required parameters & resources

AddPet action = new AddPet();

action.setPetStore(petStore);

action.setName(“bob”);

// execute the action and verify results

String result = action.execute();

assertEquals(Action.SUCCESS, result);

assertEquals(expectedPet, action.getPet());

mockPetStore.verify();

}

So what did we do here? Let’s take a look. First, we set up a mock PetStore
instance (mockPetStore); then we created a Pet that we expect to be added to
the PetStore. Finally, we created an instance of some sort of AddPet action (we

310 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 310

don’t know how this works yet). After creating the AddPet action, you can see
that we “gave” it a few values: the name of the pet to be created, “bob,” and the
PetStore that this new pet will be added to.

Last, we execute the WebWork action (AddPet) and verify that it did indeed
return a code equal to SUCCESS as well as ensure that the action does indeed
return the expected pet. Furthermore, using the MockObjects API, we can ver-
ify that the pet was indeed added to the PetStore.

Of course, this test won’t really run if AddPet doesn’t yet exist, which means
we need to write stubs now. So, we do that and then run the tests — Red Bar.
Great, that’s exactly what we expected!

Before we go ahead and implement AddPet such that we get a Green Bar,
let’s see if there are any other tests we might want to write. Note that this test
only tests the situation when a valid name is given to the action, resulting in a
SUCCESS return code. But what if no name is given to AddPet? We would
assume that AddPet returns an ERROR code instead, as well as an error
message explaining what went wrong. Let’s make a test:

public void testAddPetNoName() throws Exception {

Mock mockPetStore = new Mock(PetStore.class);

PetStore petStore = (PetStore) mockPetStore.proxy();

// mockPetStore has no expectations set, meaning the test

// will fail if any method is called on it.

AddPet action = new AddPet();

action.setPetStore(petStore);

String result = action.execute();

assertEquals(Action.ERROR, result);

assertEquals(“Please enter a valid pet name.”,

(String) action.getFieldErrors().get(“name”));

assertNull(action.getPet());

mockPetStore.verify();

}

Do you notice that this test and the last test both have some duplicate code?
That is a sure sign that it’s time to do some refactoring — which is just another
step in TDD. We can see that the creation of the mock PetStore, as well as the
action, is the same in both tests. Let’s move these duplicate code chunks over
to the setUp() method of our unit test, with the final unit test class looking
like this:

public class TestAddPet extends TestCase {

private Mock mockPetStore;

private AddPet action;

protected void setUp() throws Exception {

Creating a Web-Based Interface 311

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 311

mockPetStore = new Mock(PetStore.class);

PetStore petStore = (PetStore) mockPetStore.proxy();

action = new AddPet();

action.setPetStore(petStore);

}

public void testAddPet() throws Exception {

Pet expectedPet = new Pet();

expectedPet.setName(“bob”);

mockPetStore.expect(“savePet”, expectedPet);

action.setName(“bob”);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

assertEquals(expectedPet, action.getPet());

mockPetStore.verify();

}

public void testAddPetNoName() throws Exception {

// mockPetStore has no expectations set, meaning the test

// will fail if any method is called on it.

String result = action.execute();

assertEquals(Action.ERROR, result);

assertEquals(“Please enter a valid pet name.”,

(String) action.getFieldErrors().get(“name”));

assertNull(action.getPet());

mockPetStore.verify();

}

}

Up to this point, this exercise has been fairly academic. We’ve been doing
the same TDD process that we’ve been showcasing for the last two chapters.
Now we get into the guts, where the actual business logic will go: the Web-
Work action. After ensuring that the AddPet stub does exist and that these
tests compile, run, and fail (Red Bar), we can finally begin to write Java code
inside of those stubs and continue to run the test until we pass with a Green
Bar. The final AddPet class looks like this:

public class AddPet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private String name;

private Pet pet;

public String execute() throws Exception {

if (name == null || name.equals(“”)) {

312 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 312

addFieldError(“name”, “Please enter a valid pet name.”);

return ERROR;

}

pet = new Pet();

pet.setName(name);

petStore.savePet(pet);

return SUCCESS;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public Pet getPet() {

return pet;

}

public void setName(String name) {

this.name = name;

}

}

There you have it, a complete and working WebWork action that adds a new
pet to the database (via the PetStore service). Everything should look very sim-
ple and straightforward, except for the part where AddPet implements
PetStoreAware. What is that all about?

Recall that in Chapter 14 we discussed Inversion of Control (IoC). This
interface tells XWork’s IoC container that, in order for the action to run, it must
be given an instance of a PetStore resource. This is done by calling the
setPetStore() method before the execute() method is called.

The interface to enable XWork to automatically pass the PetStore into the
action using IoC looks like this:

public interface PetStoreAware {

void setPetStore(PetStore petStore);

}

Creating Views for AddPet
It’s great that we have a working action, but that doesn’t get us much if there
isn’t a user interface that works in tandem with it. Logically, we need to repre-
sent three views: an area where the user can input the pet’s name, a place
where error messages can be displayed, and a screen to signal to the user that
the pet was successfully added. We can combine the input and error views into

Creating a Web-Based Interface 313

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 313

a single view, because it turns out to be very useful in terms of functionality for
the user. This enables you to display error messages alongside the form field
that was entered incorrectly, so the user can easily correct inputs and resubmit.

Therefore, we will use a very simple HTML view. Let’s look at the
addpet.jsp page first. This page will be used as the initial INPUT view:

[addpet.jsp]

<%@ taglib uri=”webwork” prefix=”webwork” %>

<html>

<head>

<title>Add A Pet</title>

</head>

<body>

<table>

<form action=”AddPet.action”>

<webwork:textfield label=”Name” name=”name” />

<tr><td colspan=”2”>

<input type=”submit” value=”Add”>

</td></tr>

</form>

</table>

</body>

</html>

This HTML is bare-bones and would not be acceptable as a final user inter-
face. However, it does the job it needs to do with a minimum level of fluff. As
you can see, the form consists of two elements: a textfield and a submit button.
We use WebWork’s JSP taglibs to make presenting the textfield extremely sim-
ple. The webwork:textfield tag is very nice because it will automatically search
for field-error messages and, if they exist, display them above the HTML
INPUT control. Furthermore, it provides a standard look and feel for each
input element, which will be discussed in more detail in Chapter 17.

Now that we’ve created the INPUT view, we must create a SUCCESS view.
This is needed so that the user can have some sort of validation that the data
just entered was indeed processed by the application correctly. This SUCCESS
view will act as that confirmation and reassure the user. Therefore, your SUC-
CESS views should always try to include some reference to the action before.
In our case, it would be nice to show the user which Pet was just added to the
PetStore. Luckily, we have a getPet() method in the action, which returns
the created Pet, so this is relatively trivial.

Here is the success view — addpet-success.jsp: (from now on, we will
include only the relevant HTML contents to help focus on the important parts

314 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 314

of the page, assuming all pages have the proper enclosing HTML elements,
such as BODY and HEAD).

[addpet-success.jsp]

<html>

<head>

<title>Pet added</title>

</head>

<body>

Success - your pet called <webwork:property value=”pet.name” />

was successfully added!

</body>

</html>

Here we have a nice use of WebWork’s property tag. This tag evaluates the
expression given and prints the value of that expression. The expression
pet.name is valid because our action, AddPet, has a getPet()method, and
the Pet in turn has a getName() method. Therefore, pet.name is essentially
calling action.getPet().getName(). Using this tag, we can correctly dis-
play the name of the Pet that was just added to the database, thereby confirm-
ing the operation with the user.

Finally, we need to create an ERROR view to be displayed if the user enters
anything that is invalid. When an error occurs, the user should be able to
amend the data entered in the form. So instead of creating a new view, we can
reuse the existing addpet.jsp view.

Tying It All Together
Now that we’ve successfully created the action as well as the views, the only
thing left to do is provide the glue that binds them all together. This is done by
modifying xwork.xml and adding an entry for the AddPet action:

<action name=”AddPet” class=”org.petsoar.actions.inventory.AddPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>addpet.jsp</param>

</result>

<result name=”success”>

<param name=”location”>addpet-success.jsp</param>

</result>

</action>

Creating a Web-Based Interface 315

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 315

Notice that the input view is not actually specified here. That matches with
what we wrote in the AddPet action: we were returning only SUCCESS or
ERROR, not INPUT. The reason for this is that input is really just the first page
during the control flow (addpet.jsp), so just pointing the browser there
takes care of the need for an input view. As long as addpet.jsp submits to
AddPet.action, as we already saw, the flow will continue as desired by either
following the SUCCESS view or the ERROR view.

The only thing left to do is launch the application server and ensure that all
this stuff works correctly. If you are deploying this on your desktop, the URL
will be http://localhost:8080/inventory/addpet.jsp and should
look exactly like Figure 16.1.

Even though we’ve unit tested the AddPet action, nothing replaces a true
integration or user-acceptance test. Go ahead and try various inputs to the
name field, including no name. You should either be presented with an
ERROR message, or the SUCCESS message if all went well. The point is that
while there shouldn’t be any surprises because of the development approach
we took, it’s always good to do a sanity check at the end. Figure 16.2 shows the
flow in which the actions, views, and results interact with each other.

Figure 16.1 Screenshot of the above URL

316 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 316

Figure 16.2 The flow of adding a pet

Congratulations! Take a breath. We’ve now created our first fully TDD Web-
Work action, complete with user interfaces, to create a domain model object (a
Pet!). As always, the thing to notice here is the sheer simplicity of it all. It’s not
over yet, though. We’ve done only the C (Create) part of CRUD. Before we can
move onto U (Update), we should write an action to view a Pet. This is gener-
ally a good practice, because this action is a useful SUCCESS view for other
actions (like Create and Update). Let’s look at ViewPet next.

Displaying a Pet

At this point, we’re going to speed things up a bit, as you’ve probably gotten
the hang of TDD by now and displaying a Pet isn’t that different from adding
a Pet. So we’re going to be cutting steps out of what we show you. But that
doesn’t mean they didn’t happen, so you shouldn’t skip them when you
develop in a similar situation. We just didn’t want to bore you, that’s all!

Creating the ViewPet Action
The first thing we need to do is identify the inputs and outputs of this action.
The required input to view a Pet would be the Pet’s unique ID. The output of
this action, of course, would be the Pet itself. Simple enough. So let’s now take
these inputs and outputs and come up with a few situations that we might
want to test:

1. Retrieve a Pet with a valid ID (for example, 123) — This is the normal,
expected behavior of the ViewPet action.

2. Act accordingly if the ID given is invalid — This is when the ID is either
totally invalid (such as negative) or there is no Pet in the database with
the given ID.

AddPet

addpet-success.jsp

addpet.jsp

User Request ERROR SUCCESS

Form Submit

Creating a Web-Based Interface 317

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 317

3. Act accordingly if the ID is not given at all — We should also be able to
handle situations where the ID is never given to the action.

The complete test case for these situations is as follows:

public class TestViewPet extends TestCase {

private Mock mockPetStore;

private ViewPet action;

protected void setUp() throws Exception {

mockPetStore = new Mock(PetStore.class);

PetStore petStore = (PetStore) mockPetStore.proxy();

action = new ViewPet();

action.setPetStore(petStore);

}

public void testViewPet() throws Exception {

Pet existingPet = new Pet();

existingPet.setName(“harry”);

existingPet.setId(1);

Pet expectedPet = new Pet();

expectedPet.setName(“harry”);

expectedPet.setId(1);

mockPetStore.expectAndReturn(“getPet”, new Long(1),existingPet);

action.setId(1);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

assertEquals(expectedPet, action.getPet());

mockPetStore.verify();

}

public void testViewPetInvalidId() throws Exception {

action.setId(-1);

testViewPetNoId();

}

public void testViewPetNoId() throws Exception {

mockPetStore.expectAndReturn(“getPet”, P.ANY_ARGS, null);

String result = action.execute();

assertEquals(Action.ERROR, result);

assertEquals(1, action.getActionErrors().size());

assertEquals(“Invalid pet selected.”,

action.getActionErrors().iterator().next());

318 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 318

assertNull(action.getPet());

mockPetStore.verify();

}

}

Notice that the last two tests, testViewPetNoId and testViewPet
InvalidId, were very similar. The only difference was that one set an invalid
Pet ID, while one didn’t set an ID at all. Because they otherwise shared the
exact same tests and assertions, we’ve refactored testViewPetInvalidId
to just build upon testViewPetNoId. When writing tests, you can often
break out assertion code so that it can be used by many similar tests, as we did
in this case.

Next we must implement ViewPet until we end up with a Green Bar. The
end result is as follows:

public class ViewPet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private long id;

private Pet pet;

public String execute() throws Exception {

this.pet = petStore.getPet(id);

if (pet == null) {

addActionError(“Invalid pet selected.”);

return ERROR;

}

return SUCCESS;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public Pet getPet() {

return pet;

}

public void setId(long id) {

this.id = id;

}

}

That’s it! Now we need to create views for this action. As we can see in the
code, there is a SUCCESS view as well as an ERROR view that we need to
build. We won’t be creating any INPUT views as we did for AddPet because
we’re planning to pass in the ID of the Pet through a URL parameter, not using
an HTML form.

Creating a Web-Based Interface 319

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 319

The SUCCESS view looks like this:

[viewpet.jsp]

<html>

<head>

<title>View Pet</title>

</head>

<body>

ID: <webwork:property value=”pet.id” />

Name: <webwork:property value=”pet.name” />

</body>

</html>

And the ERROR view looks like this:

[error.jsp]

<%@ taglib uri=”webwork” prefix=”webwork” %>

<html>

<head>

<title>Error</title>

</head>

<body>

Errors occurred:

<webwork:iterator value=”actionErrors”>

<webwork:property/>

</webwork:iterator>

</body>

</html>

The ERROR view iterates over the list of actionErrors, a feature provided by
ActionSupport, the base class for ViewPet. And now, just as with AddPet, all
that is left is to update xwork.xml to tie it all together:

<action name=”viewpet” class=”org.petsoar.actions.inventory.ViewPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>error.jsp</param>

</result>

<result name=”success”>

<param name=”location”>viewpet.jsp</param>

</result>

</action>

320 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 320

That’s it. You can now fire up PetSoar, create a pet, and view it using
this newly created action. Point your browser to a URL such as http:
//localhost:8080/inventory/viewpet.action?id=123, where 123
is a valid Pet ID. A nice side effect of this design is that as new properties are
added to the Pet object, our ViewPet code doesn’t need to change at all. If you
look at the code again, you’ll see that there is no mention of the Pet’s name,
even though we refer to it in viewpet.jsp.

That’s because we’re retrieving the entire Pet object graph from the PetStore,
and then WebWork’s expression language is navigating that graph from the
webwork:property tag we used in viewpet.jsp. For example, if a new
property “gender” were added to the Pet object, we could just modify
viewpet.jsp to display the property value of “pet.gender.”

Refactoring the Actions
Let’s stop for a moment now and look back at the AddPet action, views, and
configuration. Recall that the SUCCESS view for AddPet pointed to addpet-
success.jsp, which printed the Pet’s name. A more robust way of doing this
would be to have the SUCCESS view of AddPet actually invoke the ViewPet
action for the new pet ID. There are two reasons why:

1. By redirecting to the ViewPet action, we no longer need to maintain both
addpet-success.jsp and viewpet.jsp, as addpet-success.jsp
is now obsolete. More important, doing this streamlines the user interface
flow and presents the user with a minimal set of views to work with,
thereby simplifying the user experience on the site.

2. By returning a redirect, we remove the potential problem of people cre-
ating two Pets! Currently, after posting to the AddPet action, your
browser location bar will read http://localhost:8080/inventory
/AddPet.action. If you reload the page, another Pet with the same
name will be created, even though you most likely didn’t mean to do
that. The solution to this problem is to return an HTTP redirect to the
ViewPet action. This means your browser will be now be pointing to
http://localhost:8080/inventory/ViewPet.action?id=4
after creating a new Pet (where 4 is the ID of the new pet). Any reload-
ing of the page will simply result in viewing the ViewPet page again, no
extra data!

Creating a Web-Based Interface 321

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 321

322 Chapter 16

HANDLING MULTIPLE SUBMIT REQUESTS

By redirecting to the ViewPet action, we effectively solved the problem of users
clicking the Refresh button on their browser and causing multiple submits. But
what about if the user clicks the Submit button in rapid succession, causing
multiple submit requests? Ensuring that this behavior doesn’t break your
application is one of the hardest tasks when developing a Web-based
application because of the stateless nature of HTTP and the fairly limited
feature set in browsers.

The most common way employed is to use JavaScript to ensure that the
button may only be clicked one time. When logging in to NetFlix.com, for
example, the login button changes to a “Please wait” image after the first click.
While this solution generally works and is very user-friendly, it fails for
browsers with JavaScript disabled. It merely masks the bug without actually
solving the problem.

Another more powerful technique that can be employed is to associate a
unique ID with every form input. This ID, or token, would then be used as a
handshaking identifier that is only allowed to be used once in the lifetime of
the application. If a form is submitted a second time with that same token, the
server-side processing is halted and an error is returned. This is a much safer
approach, but is generally not acceptable. Users might double-click the Submit
button and be presented with an error message even though their request went
through perfectly fine the first time.

What we really want is to combine the best of both worlds: safe server-side
support combined with a pleasant user interface. We can do this by using
WebWork’s built-in token interceptor and generator support. You can associate
each form with a unique token via the webwork:token JSP tag, and then, by
using the TokenSessionStoreInterceptor, all secondary requests with the same
token will be redirected to what the original output would have looked like.
The end result is that impatient users that double- or triple-click will still be
presented with the same results that a normal, single click would.

Using this feature is extremely simple: add a webwork:token tag in your JSP
form:

<form action=”AddPet.action”>

<webwork:token/>

<webwork:textfield label=”Name” name=”name” />

<tr><td colspan=”2”>

<input type=”submit” value=”Add”>

</td></tr>

</form>

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 322

Refactoring doesn’t always come in the form of code changes. In this case,
we can refactor addpet-success.jsp out of existence by merely modifying
xwork.xml again:

<action name=”addpet” class=”org.petsoar.actions.inventory.AddPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>addpet.jsp</param>

</result>

<result name=”success” type=”redirect”>

<param name=”location”>viewpet.action?id=${pet.id}</param>

</result>

</action>

As you can see, we’ve changed the SUCCESS result to be of type redirect.
We now pass the given Pet ID to the ViewPet action and everything automati-
cally works. This very simple change is why MVC frameworks are so useful
and powerful. All we needed to do was change one small configuration ele-
ment, and we successfully got rid of a somewhat nasty integration bug.
Finally, we can delete addpet-success.jsp.

In Figure 16.2, we show you the original flow for adding a Pet. Now that we’ve
made this change, the flow has changed just a little bit, as seen in Figure 16.3.

Creating a Web-Based Interface 323

In your xwork.xml configuration file, just add the token interceptor to the
action’s stack, as shown here:

<action name=”addpet”

class=”org.petsoar.actions.inventory.AddPet”>

<interceptor-ref name=”defaultStack”/>

<interceptor-ref name=”token-session”/>

<result name=”error”>

<param name=”location”>addpet.jsp</param>

</result>

<result name=”success” type=”dispatcher”>

<param name=”location”>

viewpet.action?id=${pet.id}

</param>

</result>

</action>

Where the interceptor reference named token-session is associated with the
class com.opensymphony.webwork.interceptor.TokenSessionStoreInterceptor.

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 323

Figure 16.3 The new flow for adding a Pet, using the ViewPet action

As mentioned in Chapter 6, WebWork supports many kinds of result types
besides the default dispatcher type and the redirect type used here. These var-
ious results can greatly change the behavior of your application, and you
should plan out carefully how you intend to use them.

In this section, we sped up the TDD cycles used to create ViewPet, but also
focused on more advanced refactoring that may not necessarily come from
code changes. We will continue to refactor both code and noncode throughout
the remainder of the chapter in this same manner.

Editing a Pet

So far, we’ve done only the “CR” and have the “UD” left to do. So, let’s start
attacking the U of CRUD and make an EditPet action. Just as we did before,
let’s figure out what the edit pet scenario is supposed to do and then decide on
what we should test. The process flow is:

1. We retrieve the Pet information and return the user to an input page
that contains all the existing data prefilled out for the user, thereby
making incremental changes very easy.

2. The user modifies the data in the form elements and submits it.

3. The pet is retrieved from the database, the new fields are updated, and
the changes are then stored in the database.

AddPet

ViewPetviewpet.jsp

addpet.jsp

User Request ERROR SUCCESS

SUCCESS

Form Submit

324 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 324

Looking at this process flow, we can identify what tests we might want to
do, which are shown as follows:

1. Normal behavior — Expected and valid inputs are given and the update
to the database is therefore completed successfully.

2. Invalid data elements — The Pet ID is correctly given, but the name of the
Pet is invalid (missing or blank), causing an error-return code.

3. Incorrect identifier — The Pet ID given to the action is totally incorrect,
causing an error-return code.

Here is the test case that we came up with to satisfy these three conditions:

public class TestEditPet extends TestCase {

private Mock mockPetStore;

private EditPet action;

private Pet existingPet;

protected void setUp() throws Exception {

mockPetStore = new Mock(PetStore.class);

PetStore petStore = (PetStore) mockPetStore.proxy();

action = new EditPet();

action.setPetStore(petStore);

existingPet = new Pet();

existingPet.setName(“bob”);

existingPet.setId(1);

}

public void testEditPet() throws Exception {

mockPetStore.expectAndReturn(“getPet”, new Long(1),existingPet);

Pet expectedPet = new Pet();

expectedPet.setName(“bill”);

expectedPet.setId(1);

mockPetStore.expect(“savePet”, expectedPet);

action.getPet().setId(1);

action.getPet().setName(“bill”);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

mockPetStore.verify();

}

public void testEditPetNoName() throws Exception {

mockPetStore.expectAndReturn(“getPet”, new Long(1),existingPet);

action.getPet().setId(1);

Creating a Web-Based Interface 325

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 325

String result = action.execute();

assertEquals(Action.ERROR, result);

assertEquals(1, action.getFieldErrors().size());

assertEquals(“Please enter a valid pet name.”,

action.getFieldErrors().get(“pet.name”));

mockPetStore.verify();

}

public void testEditPetInvalidId() throws Exception {

String result = action.execute();

assertEquals(Action.ERROR, result);

assertEquals(1, action.getActionErrors().size());

assertEquals(“Please enter a valid pet ID.”,

action.getActionErrors().iterator().next());

assertEquals(new Pet(), action.getPet());

mockPetStore.verify();

}

}

Starting with a Red Bar and developing EditPet until a Green Bar is found,
the result is:

public class EditPet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private Pet pet = new Pet();

public String execute() throws Exception {

if (pet.getId() < 1 || petStore.getPet(pet.getId()) == null) {

addActionError(“Please enter a valid pet ID.”);

return ERROR;

} else if (pet.getName() == null || pet.getName().equals(“”)) {

addFieldError(“pet.name”, “Please enter a valid pet name.”);

return ERROR;

}

petStore.savePet(pet);

return SUCCESS;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public Pet getPet() {

return pet;

}

}

326 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 326

Checking Validity
Why pet.getId() < 1? By looking at the Pet class, we can see that by
default the ID value is 0, so this test will check for invalid IDs. We must also
check that the ID we are given by the user’s browser is a valid one. Hence, we
try to retrieve the existing Pet with that ID and check that it exists. The second
if statement checks that the name of the Pet is valid, as we indicated we
wanted to look for in test #2.

Quickly jumping into the views, we know that we need a few views: one for
data entry (INPUT), one for confirmation (SUCCESS), and one for error mes-
sages (ERROR). Following the procedure we did with ViewPet and AddPet,
we will do the following:

1. SUCCESS — This will be a redirect to ViewPet, just like AddPet does.

2. INPUT — We will need to create a simple data-entry page for updating
Pets.

3. ERROR — Error messages can be displayed inline in the INPUT view.

And now we create editpet.jsp:

[editpet.jsp]

<html>

<head>

<title>Edit Pet</title>

</head>

<body>

<table>

<form action=”editpet.action”>

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:hidden name=”pet.id” />

<tr><td colspan=”2”>

<input type=”submit” value=”Update”>

</td></tr>

</form>

</table>

</body>

</html>

The interesting thing to note here is the use of the webwork:hidden tag. This
essentially ensures that the Pet we are trying to edit is correctly remembered
during an otherwise stateless protocol session (HTTP).

Creating a Web-Based Interface 327

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 327

Tying It All Together — Take II
Now it is time to tie everything together again. But this time, it’s a little different
than it was for AddPet and ViewPet. That is because, unlike with AddPet, we
can’t just send the user off to the INPUT view directly. That is because we must
prefetch the existing Pet information so that the input fields aren’t empty. What
we need to do is retrieve the Pet information, then display editpet.jsp.

Lucky for us, we already wrote this code. Can you guess which action does
this? ViewPet, of course! The only difference with ViewPet is that its SUCCESS
view sends off to viewpet.jsp, not to editpet.jsp. Not a problem. We can
create an alias of ViewPet that can be used for our purposes. Following is the
new xwork.xml configuration. See how ViewPet is used for two different
actions but has slightly different uses:

<action name=”viewpet” class=”org.petsoar.actions.inventory.ViewPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>error.jsp</param>

</result>

<result name=”success”>

<param name=”location”>viewpet.jsp</param>

</result>

</action>

<action name=”editpetload”

class=”org.petsoar.actions.inventory.ViewPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>error.jsp</param>

</result>

<result name=”success”>

<param name=”location”>editpet.jsp</param>

</result>

</action>

<action name=”editpet” class=”org.petsoar.actions.inventory.EditPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>editpet.jsp</param>

</result>

<result name=”success” type=”redirect”>

<param name=”location”>viewpet.action?id=${pet.id}</param>

</result>

</action>

328 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 328

Once again, fire up PetSoar and point your browser to http://local
host:8080/invetory/editpetload.action?id=123 and see it all in
action. We’re now “CRU,” with only a “D” left to implement. So let’s do it!

Get that Pet Out of Here!

It’s a great day for Bob the pet, as he’s been sold and is well on his way to a life-
time of love and happiness. But Bob’s leaving does mean one thing for us: we
need to get him out of the database so no one else thinks he’s still available for
purchase. As usual, let’s get started with what this action will do and what we
need to test.

NOTE Deleting data from the database is the most sensitive operation out of
the CRUD process. Therefore, we must be very careful to properly warn the user,
as well as to ensure that the user has clearly confirmed his or her intentions to
us. A simple way to do this is to require that a confirm input be be given to our
action and that its value be non-null.

Other times, delete is nothing more than turning on a “delete flag,” and you
may or may not require this extra step of confirmation. Many systems don’t
actually delete data, as it could break referential integrity if, for example,
PetSoar is tracking Pet history or sales.

Because we’ll be asking for some sort of confirmation of this process, we’ll
need to test three unique cases:

1. The confirmation element is given to us, and the Pet is successfully
removed, resulting in a SUCCESS return code.

2. The Pet ID given is invalid, resulting in an ERROR return code.

3. The user decided against deleting this Pet and has not provided the
confirmation we are looking for. This will result in a CANCEL return
code.

The test case looks like this:

public class TestRemovePet extends TestCase {

private RemovePet action;

private Mock mockPetStore;

protected void setUp() throws Exception {

mockPetStore = new Mock(PetStore.class);

PetStore petStore = (PetStore) mockPetStore.proxy();

action = new RemovePet();

Creating a Web-Based Interface 329

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 329

action.setPetStore(petStore);

}

public void testRemovePet() throws Exception {

Pet pet = new Pet();

pet.setName(“zizi the zebra”);

mockPetStore.matchAndReturn(“getPet”, pet);

mockPetStore.expect(“removePet”, pet);

action.setId(1);

action.setConfirm(“foo”);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

mockPetStore.verify();

}

public void testInvalidIdEntered() throws Exception {

mockPetStore.matchAndReturn(“getPet”, null);

String result = action.execute();

assertEquals(Action.ERROR, result);

assertEquals(1, action.getActionErrors().size());

assertEquals(“Invalid pet selected.”,

action.getActionErrors().iterator().next());

mockPetStore.verify();

}

public void testCancel() throws Exception {

Pet pet = new Pet();

pet.setName(“zizi the zebra”);

mockPetStore.matchAndReturn(“getPet”, pet);

action.setId(1);

String result = action.execute();

assertEquals(“cancel”, result);

mockPetStore.verify();

}

}

Note that, in testInvalidIdEntered, we make the mock object return
null for any call to getPet. This is a nice little trick for when you are testing for
situations like an invalid Pet ID. You might want to remember this one!

330 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 330

NOTE Another way to handle confirmation of important tasks, such as
deleting a Pet, is to use JavaScript to ask the user if he or she really wishes to
go ahead with this process. This is a very nice user interface mechanism and
works well when JavaScript is not disabled on the browser. However, we don’t
like to depend on it as the way to confirm a user’s intentions, because it is not
guaranteed that JavaScript will indeed be working on the client. The best
technique is to use both JavaScript as well as a server-side confirmation
technique, as we do here.

So now we create the stubs. Test. Rinse. Repeat. Green Bar. Stop. And what
we have is:

public class RemovePet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private long id;

private Pet pet;

private String confirm;

public String execute() throws Exception {

this.pet = petStore.getPet(id);

if (pet == null) {

addActionError(“Invalid pet selected.”);

return ERROR;

}

if (confirm != null) {

petStore.removePet(pet);

return SUCCESS;

} else {

return “cancel”;

}

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public Pet getPet() {

return pet;

}

public void setId(long id) {

this.id = id;

}

public void setConfirm(String confirm) {

this.confirm = confirm;

}

}

Creating a Web-Based Interface 331

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 331

Note that the confirm element needs to be non-null. We don’t actually check
for any value. That is why in our test case we set the value to “foo” and it still
worked correctly. The reason for this will become very clear once we create the
view for this action, which we will do right now.

[removepet.jsp]

<html>

<head>

<title>Remove Pet</title>

</head>

<body>

<table>

<form action=”removepet.action”>

<webwork:hidden name=”id” />

<tr><td colspan=”2”>

Are you sure you want to delete

<webwork:property value=”pet.name” />?

<input type=”submit” name=”confirm” value=”Remove”>

<input type=”submit” value=”Cancel”>

</td></tr>

</form>

</table>

</body>

</html>

Of special importance is how we handled the confirm input. Notice that the
Remove button is named “confirm,” but the Cancel button has no name. Both
are Submit buttons, so both will cause RemovePet to be executed. The only
difference is that if Remove is clicked, RemovePet.setConfirm will be called
with the argument of “Remove.” This is a simple (but powerful) way for us to
handle different behavior based upon the button the user clicks.

Lastly, let’s quickly add the required elements to xwork.xml. Just as we did
with EditPet, we will be creating an alias for ViewPet that we will use with a
different view: removepet.jsp. Here is what the configuration now looks
like:

<action name=”removepetload”

class=”org.petsoar.actions.inventory.ViewPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>error.jsp</param>

</result>

332 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 332

<result name=”success”>

<param name=”location”>removepet.jsp</param>

</result>

</action>

<action name=”removepet”

class=”org.petsoar.actions.inventory.RemovePet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>error.jsp</param>

</result>

<result name=”success” type=”redirect”>

<param name=”location”>default.jsp</param>

</result>

<result name=”cancel” type=”redirect”>

<param name=”location”>viewpet.action?id=${pet.id}</param>

</result>

</action>

Notice we have a view other than SUCCESS, ERROR, or INPUT: CANCEL.
All we do when the CANCEL result is found is redirect the user to viewing the
Pet the user just decided not to delete.

Congratulations! We’ve just completed the CRUD cycle and have working
code for all four data actions. But we’re not finished just yet. As explained in
Chapter 13, TDD says you should always look over your code you just wrote
and see if there is anymore refactoring that can be done. As it turns out, there
are a few things we can make better through the process of refactoring, so let’s
get started.

Refactoring the CRUD

While AddPet, ViewPet, EditPet, and RemovePet are all very nice on their
own, there appears to be plenty of room for optimizations via refactoring. Be
careful not to make any changes that affect the behavior of the code, such as
adding new features. Since tests are already written, we can refactor and we
should still get a Green Bar.

This is a vital step in the process. Often, when developing Web-tier actions,
you’ll find that over time you will end up with many actions with duplicate or
close-to-duplicate portions of code. In this section, we will look at three refac-
torings that will make the four actions we’ve created contain much less dupli-
cation of code, thereby making already simple classes that much simpler.

Creating a Web-Based Interface 333

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 333

Removing Duplication in ViewPet and RemovePet
Looking back at ViewPet and RemovePet, we see that they are strikingly simi-
lar. To refresh your memory, here is ViewPet:

public class ViewPet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private long id;

private Pet pet;

public String execute() throws Exception {

this.pet = petStore.getPet(id);

if (pet == null) {

addActionError(“Invalid pet selected.”);

return ERROR;

}

return SUCCESS;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public Pet getPet() {

return pet;

}

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

}

RemovePet looks like this:

public class RemovePet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private long id;

private Pet pet;

private String confirm;

public String execute() throws Exception {

this.pet = petstore.getPet(id);

if (pet == null) {

addActionError(“Invalid pet selected.”);

334 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 334

return ERROR;

}

if (confirm != null) {

petstore.removePet(pet);

return SUCCESS;

} else {

return “cancel”;

}

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public Pet getPet() {

return pet;

}

public void setId(long id) {

this.id = id;

}

public void setConfirm(String confirm) {

this.confirm = confirm;

}

}

As you can see, both actions have very similar structures. RemovePet has an
extra field (confirm) and a slightly more complicated execute method, but
otherwise they are carbon copies. Let’s fix that, since duplicating of code is
always bad. We can do that by simply making RemovePet extend ViewPet and
change it’s execute method to take advantage of this new class hierarchy.
RemovePet is now much smaller:

public class RemovePet extends ViewPet {

private String confirm;

public String execute() throws Exception {

String result = super.execute();

if (hasErrors()) {

return result;

}

if (confirm != null) {

petStore.removePet(pet);

return SUCCESS;

} else {

Creating a Web-Based Interface 335

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 335

return “cancel”;

}

}

public void setConfirm(String confirm) {

this.confirm = confirm;

}

}

What we did is have RemovePet’s execute() method first execute its
superclass execute() method. Then it checks to see if that execution caused
any errors to be reported, and, if so, it terminates processing. The rest of the
method is just as it was before the refactoring. Also, note that the only field we
specify for RemovePet is confirm, as all the other fields are already part of
ViewPet.

We also changed ViewPet slightly. All of its fields were changed from
private to protected to allow RemovePet to access them. After doing this,
all that is left is to run the unit tests for ViewPet and RemovePet. Green Bar!
That means the refactoring was successful and we don’t have to worry
about the code changes, since our tests just guaranteed the changes didn’t
break anything.

Odd One Out
If you recall, AddPet behaved a little differently from the other three actions.
Instead of setting “pet.name,” the input was just the name field of the action.
Why not make all the actions standard so we can further remove duplicate
code? What this means is, rather than specifying the name directly, the Pet
POJO will have its name field set instead. Here’s our new AddPet action:

public class AddPet extends ActionSupport implements PetStoreAware {

private PetStore petStore;

private Pet pet = new Pet();

public String execute() throws Exception {

if (pet.getName() == null || pet.getName().equals(“”)) {

addFieldError(“pet.name”, “Please enter a valid pet name.”);

return ERROR;

}

petStore.savePet(pet);

return SUCCESS;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

336 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 336

}

public Pet getPet() {

return pet;

}

}

Not bad. Let’s run the tests to confirm our refactoring was successful. Red
Bar! Uh oh, what happened? After a bit of investigation, we see that the prob-
lem is that the tests are still looking for errors reported on “name” and we’ve
changed it to “pet.name.” So let’s refactor our test case to accommodate this
new change. The relevant parts are highlighted here:

public void testAddPet() throws Exception {

...

action.getPet().setName(“bob”);

...

}

public void testAddPetNoName() throws Exception {

...

assertEquals(“Please enter a valid pet name.”,

(String) action.getFieldErrors().get(“pet.name”));

...

}

Likewise, we need to update our addpet.jsp view to also accommodate
this change. The new webwork:textfield tag will look like this:

<webwork:textfield label=”Name” name=”pet.name” />

Having made this change, we can now clearly see the overlap between
AddPet and EditPet. Both have the exact same fields, a “blank” Pet POJO, and
similar execute methods. The only difference is that EditPet requires that the
Pet ID be valid before updating the database. Refactoring more, we get EditPet
to look like this:

public class EditPet extends AddPet {

public String execute() throws Exception {

if (pet.getId() < 1 || petStore.getPet(pet.getId()) == null) {

addActionError(“Please enter a valid pet ID.”);

return ERROR;

}

return super.execute();

}

}

Creating a Web-Based Interface 337

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 337

It’s the incredible shrinking code! It’s amazing how simple these actions are
getting. All the while, our refactoring is validated through the unit tests report-
ing Green Bar. The only change needed for AddPet is that its fields are now
protected, just as we did with ViewPet.

Note that EditPet uses its superclass execute method after it validates the
incoming data. This is different from when RemovePet used its superclass
before any data processing occurred. The order of when to use the superclass
execute method is entirely determined by the object hierarchy and the require-
ments as to what should be executed first.

Performing One Last Refactor
We’ve successfully turned EditPet and RemovePet into very simple actions,
but there is still quite a bit of code duplication between ViewPet and AddPet.
Both have a PetStore field, as well as a Pet, including their associated getter
and setter methods. What we can do is move these common elements into an
abstract class that doesn’t actually process anything, but provides a base for
ViewPet and AddPet to extend from. What we end up with is this:

public abstract class AbstractPetAction extends ActionSupport

implements PetStoreAware {

protected PetStore petStore;

protected Pet pet = new Pet();

public void setPetStore(PetStore petstore) {

this.petstore = petstore;

}

public Pet getPet() {

return pet;

}

}

public class ViewPet extends AbstractPetAction {

private long id;

public String execute() throws Exception {

this.pet = petStore.getPet(id);

if (pet == null) {

addActionError(“Invalid pet selected.”);

return ERROR;

}

return SUCCESS;

338 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 338

}

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

}

public class AddPet extends AbstractPetAction {

public String execute() throws Exception {

if (pet.getName() == null || pet.getName().equals(“”)) {

addFieldError(“pet.name”, “Please enter a valid pet name.”);

return ERROR;

}

petStore.savePet(pet);

return SUCCESS;

}

}

Once again, run the unit tests to ensure that this refactor didn’t break any-
thing. Green Bar, Good. We’ve successfully turned four simple actions into
four incredibly simple actions, all in a very short time thanks to our unit tests.
Comparing the old object hierarchy (shown in Figure 16.4) with our new, very
nice Object-Oriented design (shown in Figure 16.5), we can see that object
reuse is much more prominent in this new design.

Figure 16.4 Old UML model for the CRUD actions

ActionSupport

AddPet ViewPet EditPet RemovePet

Creating a Web-Based Interface 339

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 339

Figure 16.5 New UML model for the CRUD actions

Decoupling the Validation
Even after the refactoring and a more organized object model, there is still one
thing that reeks of “code smell”: the data validation logic is tied to the actions
themselves. It would be nice if we could extract this so that the actions
focus only on their sole task, not worrying about valid input parameters. For-
tunately, XWork comes with a very nice validation framework we can use to
do this.

The validation framework provides a clean separation of concerns. To use
the validation portion of WebWork, we must first provide a list of possible val-
idator classes that will do the validation against user input. WebWork comes
with a nice set of classes already built for us that we can use, so we’ll just stick
with the default validators.xml file shipped with WebWork. This file will
be placed in the classpath (WEB-INF/classes) alongside xwork.xml.

The default set of validator classes that we can use are as follows:

■■ required — Reports an error if a field has a null value.

■■ requiredstring — Reports an error if a field has a null value or an empty
string value.

■■ int — Reports an error if an integer is not within a specified range.

■■ date — Reports an error if a date is not within a specified range.

■■ expression — Reports an error if the given expression does not evaluate
to true. This is the most powerful validator.

ActionSupport

AbstractPetAction

ViewPet AddPet

RemovePet EditPet

340 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 340

Creating a Web-Based Interface 341

USING XWORK COMMANDS

As you’ve seen, we’ve been using the ViewPet action as an alias for editpetload
and removepetload. We’ve also now refactored the four CRUD action classes to
eliminate duplication of code, as shown in comparison between the new and
old UML diagrams. While using ViewPet as an alias is one way to achieve this
goal, there is another way to do this: using XWork commands.

As explained in Chapter 6, XWork executes an action’s execute method by
default. However, you can specify other methods in the configuration that you
wish to be executed when an action alias is invoked. So, rather than making
editpetload alias to ViewPet directly, it would have been possible for us to
make editpetload alias to a method in EditPet action called doLoad(). The end
result is pretty much the same, so the choice is entirely stylistic and up to you.
For your convenience, we’ve provided what the action aliases might look like
for editing a Pet if you were to choose this approach:

<action name=”editpetload”

class=”org.petsoar.actions.inventory.EditPet”

method=”doLoad”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>viewpet.jsp</param>

</result>

<result name=”success”>

<param name=”location”>editpet.jsp</param>

</result>

</action>

<action name=”editpet”

class=”org.petsoar.actions.inventory.EditPet”>

<interceptor-ref name=”defaultStack”/>

<result name=”error”>

<param name=”location”>editpet.jsp</param>

</result>

<result name=”success” type=”redirect”>

<param name=”location”>

viewpet.action?id=${pet.id}

</param>

</result>

</action>

As indicated by the bold area, the only difference is that editpetload is now
calling doLoad() in the EditPet action, rather than calling ViewPet’s execute()
method. The advantage of this is that each action class is in complete control of
its behavior. The disadvantage is that now each action class needs an extra
method that will most likely end up calling a superclass method, as we did in
our refactored design. The choice is yours as to which style you prefer.

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 341

Now let’s take a look at the AddPet action. Currently, its execute()
method looks like the following:

public String execute() throws Exception {

if (pet.getName() == null || pet.getName().equals(“”)) {

addFieldError(“pet.name”, “Please enter a valid pet name.”);

return ERROR;

}

petstore.savePet(pet);

return SUCCESS;

}

Notice that the check on pet.getName() is exactly what the required
string validator does! So let’s use this validator for AddPet. We can do
this by creating a validation XML file using either the class name of the
action or the alias name of the action as given in xwork.xml. We will place
AddPet-validation.xml in the same package of AddPet, and it will be
picked up automatically. Here’s what it looks like:

<validators>

<field name=”pet.name”>

<field-validator type=”requiredstring”>

<message>Please enter a valid pet name.</message>

</field-validator>

</field>

</validators>

One nice thing about the validation framework is that error messages can be
customized by referring to expressions using the notation ${...}, just as we
did for the redirects to the ViewPet action. That means you could customize
error messages to print values that the user enters, making the error message
carry more clarity.

We could have had the error message say, “Please enter a valid Pet name. You
entered ${pet.name}.” But we didn’t do that because we know that if an error
message is printed, it will have an empty value anyway, so there was no point
in attempting to print it. However, often you do want to specify values in your
error messages, so this is a very powerful feature. For example, an error mes-
sage might say, “Please enter an int between 1 and 10; you entered 11.”

NOTE WebWork, and it’s underlying core, XWork, are very capable of
supporting internationalization. While the error message presented here does
not support i18n, XWork does provide support for loading error messages from
resource bundles, giving full compatability for i18n by using the optional “key”
attribute to the message element and providing resource bundles for the Action.

342 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 342

Now that we’ve moved the validation logic to a configuration file, let’s
remove it from AddPet’s execute method. The new method will look like this:

public String execute() throws Exception {

if (hasErrors()) {

return ERROR;

}

petstore.savePet(pet);

return SUCCESS;

}

Not too shabby! More validation rules can be added at any time without
changing the action code at all. We have achieved a complete decoupling of
validation and action. Even better, because EditPet extends AddPet, the same
validation rules will also be applied toward the EditPet action. We’re now fin-
ished with refactoring our CRUD actions and have achieved a very simple set
of actions that are fully unit tested, nicely organized, and have no duplication
of code. Not bad at all.

But one question remains: How easy are these actions to add functionality
to? All we’ve been talking about is Pets having either an ID or a name. Very
often with Web applications, new data fields are added to domain objects. The
actions that suffer the most from this kind of change are the CRUD classes.
What if new fields are added to the Pet class, such as gender or description?
Can our design easily accommodate for that? Let’s find out.

Changing the Pet

Suppose our boss has given us the task of adding various fields to the Pet
domain object because currently we have only a name and ID field, which
really isn’t enough to be useful for a fully functional PetStore. Our boss wants
to double that number of fields by adding gender and description to the Pets.
Normally, we might be a bit unhappy, especially after all this work we’ve just
gone though. While this might seem to be a fairly large undertaking, it turns
out that this is the simplest process of this whole chapter!

It’s trivial for us to add new fields to the pet. Why? Because we have a com-
plete unit test suite, a nicely structured object hierarchy thanks to our refactor-
ing, and views and validations that are completely decoupled from the Java
code. Without further delay, let’s get started by looking at all four of our CRUD
actions, starting with AddPet.

Recall that we had refactored AddPet to use the Pet POJO rather than have
individual fields in the action class itself. Because we did that, the action code

Creating a Web-Based Interface 343

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 343

doesn’t need to be updated at all. Assuming that gender and description are
both optional fields, all that needs to be updated is the view, addpet.jsp:

<form action=”addpet.action”>

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:select label=”Gender” name=”pet.gender”

list=”{‘Unknown’, ‘Male’, ‘Female’}” />

<webwork:textarea label=”Description” name=”pet.description” />

<tr><td colspan=”2”>

<input type=”submit” value=”Add”>

</td></tr>

</form>

The only change here is that the two new fields were added to the view
using WebWork’s select and text-area controls. The gender field was given a
choice of three options (Unknown, Male, and Female). Is that really are there is
to it? Maybe our boss isn’t such a bad guy after all!

So now we load up our application server and verify that this new
functionality works — or at least we think it works. It’s pretty hard to tell
when the ViewPet page isn’t showing these fields. So, let’s fix that by updating
viewpet.jsp to display these new values:

ID: <webwork:property value=”pet.id” />

Name: <webwork:property value=”pet.name” />

Gender: <webwork:property value=”pet.gender” />

Description: <webwork:property value=”pet.description” />

Again, amazingly simple. Our boss is going to love us! Quickly moving on
to update, we see that the same exact changes made to viewpet.jsp are
needed for editpet.jsp:

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:select label=”Gender” name=”pet.gender”

list=”{‘Unknown’, ‘Male’, ‘Female’}” />

<webwork:textarea label=”Description” name=”pet.description” />

Finally, does RemovePet need to change? Since its views don’t need to dis-
play these other fields, we don’t need to do anything at all. Just for the sake of
safety, we can run our unit tests one more time. Green Bar. But of course they
would pass; we never changed the actions!

And that is the amazing part. We’ve actually modified our domain object
and its corresponding CRUD actions with only six lines of HTML and JSP
(excluding the changes to the Pet class itself, of course). We’ll be getting to go
home early today.

344 Chapter 16

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 344

Summary

There you have it, the beginning of the Web interface for PetSoar. Of course,
we’re not finished yet. We still have a lot of cleanup to do with the views, as
they are currently way too simple and ugly. Chapter 17 discusses tips and tech-
niques how we can make this user interface much better looking.

So, what did we learn today? Creating actions for the Web interface is not
nearly as hard as it sounds. Refactoring those actions should be done at all
times, because the refactorings will save you time down the road, as we just
showed when we added two new fields to the Pet. We demonstrated simple
usage of the validation framework and how it cleanly decouples the view,
action, and validation logic into three distinct parts. Overall, we showed you
how we can extend from the domain objects developed in Chapter 15 and
easily create a Web interface in almost no time.

Creating a Web-Based Interface 345

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 345

20 463620 Ch16.qxd 10/28/03 8:50 AM Page 346

347

In Chapter 16, we explored how to use WebWork to tie in domain objects to
interact with a Web interface. We focused mainly on the actions that bind
HTML to the domain objects, leaving the HTML in a bare-bones state. In this
chapter, we will discuss various techniques and technologies that can make
the Web in your Web application much better in both design and look. Starting
from the lowest level, we will discuss how HTML can be componentized and
folded into common reusable libraries. We will then take this same logic and
apply it toward high-level elements common in your pages. Finally, we will
look at various options for beatifying your pages with the help of a graphic
designer. The technologies discussed include WebWork, SiteMesh, and Cas-
cading Style Sheets.

Componentizing Form Widgets

In Chapter 16, we show how simple it is to add new fields to your domain
object. We add description and gender to the Pet object and essentially get the
new features for free because our action code doesn’t have to be modified at
all. The only change needed is to update our JSPs to include calls to Web-
Work’s rich set of UI tags. These tags automatically create the required HTML
to input the new data such as gender and description.

Defining Navigation, Layout,
Look, and Feel

C H A P T E R

17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 347

But what if you want something other than a simple select box or text field?
Let’s suppose that you’re now tasked to add another new field to the Pet class:
birthdate. Just as we do in the last chapter, the only Java code that needs to
change is Pet.java itself — the actions will automatically work. But what
about the input fields in the JSPs? Are they also just as simple?

The short answer is “yes.” Assuming that you want users to enter date infor-
mation using a simple text field, all that is needed is making yet another web-
work:textfield tag call from your JSP file. But often people don’t want to enter
dates by hand. They’d rather have a popup calendar or three drop-down select
boxes representing month, day, and year. These are more complex than the
previous WebWork tags we use in the previous chapter.

Luckily, WebWork caters to users like us who require more advanced usage
from the user interface form widgets. Through the use of the generic web-
work:component tag, we can create custom, reusable user-interface elements
that have the same look and feel that the existing form elements do.

Suppose that it is decided that a popup calendar is the best option for our
user interface. We’ve already found a nice Open Source JavaScript calendar
program, so most of the hard work is already taken care of. Without worrying
about components just yet, let’s see how we might use this calendar without
any fancy tag libraries:

<tr>

<td>Birthdate:</td>

<td>

<script language=”JavaScript”

src=”/decorators/datepicker.js”></script>

<input type=”text” name=”pet.birthdate”>

<a href=”javascript:show_calendar(‘/’, ‘editform’,

document.editform, ‘pet.birthdate’);”>

<img src=”/images/icons/cal.gif” width=”16” height=”16”

border=”0” alt=”Pick a date”>

</td>

</tr>

NOTE Note that, in the previous example, we assumed that PetSoar has been
deployed to the root context of your application server. This was done for the
sake of brevity only. A more robust solution would be to replace instances of /
with <% request.getContextPath() %>, which we have done in the actual
application. In general, you should always prepend any absolute URL with a call
to getContextPath. It’s the only way to ensure your application is totally
portable.

The show_calendar() JavaScript function requires that the form be given
a name. We’ve chosen to call the form editform, which means that the form

348 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 348

tag must also contain this name. Otherwise, the JavaScript would not be able
to find the input element and set it with the selected date.

<form action=”editpet.action” name=”editform”>

<webwork:textfield ... />

<webwork:select ... />

<tr>

<td>Birthday</td>

...

</tr>

</form>

That’s it! Now we’ve got a working popup calendar that can be used to
select birthdates. But there are a couple problems:

1. It looks odd to see the <tr> and <td> tags beside the much slicker-
looking WebWork tags that take care of the table formatting for you.

2. If we want to use this same type of input in another form (such as when
adding a Pet rather than editing), we can’t just copy the preceding text
directly. The form name must be changed from editform to addform.

The first problem can be addressed with a simple JSP include tag or directive,
but the second problem is a bit more complex. Somehow, values in editpet
.jsp or addpet.jsp need to be passed in to the widget so that the form name
can be given to the calendar function. JSP has support for this using jsp:include
and jsp:param, but WebWork offers a more powerful and graceful alternative:
component tags. The WebWork component tags are a set of predefined JSP tags
that allow you to turn form controls, their error messages, and surrounding
basic HTML into reusable components.

WebWork’s component tags are nicer than the jsp:include (used beside
jsp:param) for several reasons:

1. Parameters passed using jsp:param can only be string values. Parame-
ters passed to WebWork tags, using webwork:param, can be any object
that can be retrieved through XWork’s powerful expression language.

2. Using jsp:include means that you are tying your included component (a
date picker in this case) to your view code. If you ever want to change
the file that is being included, you have to modify all pages that include
the original date picker to include a new date picker.

3. WebWork’s UI tags come with support for “themes.” These themes
allow you to change the look and behavior of all the components by
simply changing a single configuration element. By default, the theme
is “xhtml,” which are simple XHTML-compliant UI tags. These could
be changed to interactive Java Applets or any other style for data entry
very easily, with no need to change the JSPs using the components.

Defining Navigation, Layout, Look, and Feel 349

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 349

Using the new webwork:component tag, what does the HTML in editpet
.jsp look like now? Following are all of the input components for editing
Pets, including the new support for the generic date picker:

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:select label=”Gender” name=”pet.gender”

list=”{‘Unknown’, ‘Male’, ‘Female’}” />

<webwork:textarea label=”Description” name=”pet.description” />

<webwork:component label=”Birthdate” template=”datepicker.vm”

name=”pet.birthdate”>

<webwork:param name=”formname” value=”’editform’” />

</webwork:component>

The HTML we previously had has been abstracted to a component that we
have yet to write: datepicker.vm. Components in WebWork are written in
the Velocity templating language because it offers unparalleled speed in all
Servlet containers. Before we look at the contents of datepicker.vm, let’s
carefully look at what this component tag is actually doing.

There are three attributes in the webwork:component tag that we are using:
label, name, and template. These attributes are discussed in more detail in
Chapter 6, but let’s briefly highlight the ones used in this particular example:

■■ Label — The text value that will be displayed on the Web.

■■ Name — The field name that will be set by WebWork. In this case, it is a
representation of a path in the object graph, resulting in an equivalent
call to action.getPet().setBirthdate().

■■ Template — The Velocity file that does the rendering and display
logic for a particular component.

All that is left to write is the actual contents for datepicker.vm:

#parse(“/decorators/xhtml/controlheader.vm”)

<script language=”JavaScript” src=”/decorators/datepicker.js”></script>

<input type=”text” name=”${tag.Name}” value=”$!{tag.ActualValue}”/>

<a href=”javascript:show_calendar(‘/’, ‘${tag.Params.get(“formname”)}’,

document.${tag.Params.get(“formname”)}, ‘${tag.Name}’);”>

<img src=”/images/icons/cal.gif” width=”16” height=”16”

border=”0” alt=”Pick a date”>

#parse(“/decorators/xhtml/controlfooter.vm”)

Though it might look a little scary at first, this is really nothing new. The only
difference is the syntax that you might be used to, such as JSP. Rather than <%=
foo %> or <webwork:property value=”foo”/>, we use $foo. Everything
else is pretty much the same. As you can see here, the logic in this small file is
exactly what we need based upon the original static HTML previously written.

Note that the content here is slightly simplified, again for the sake of brevity.
A complete date-picker component might want other properties to be

350 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 350

specified, such as the size of the input box, date format, a marker indicating
the field is required, and so on. Also, at the moment, we can only include one
of these date-picker components in the page at once, because the JavaScript
include will be duplicated, causing an error on most browsers. However, this
suits our needs for now and is acceptable. In the future, we could modify the
tag to use a Boolean parameter to indicate that the JS had already been
included and whether to include it again.

Now that we’ve looked at the smallest-level component in our forms, a form
widget, let’s move up one level and see if there are ways we can componentize
other parts of our pages.

Forming a Better Look and Feel

Moving on, let’s see if we can improve the look and feel of the form in
editpet.jsp, while still maintaining a nicely componentized architecture.
But before we try to make a nice architecture, let’s just try to make the user
interface look nice. Just as premature optimization can hurt a project, so can
premature architecture design — especially when doing TDD.

Most forms should have some sort of title as well as a detailed description of
what the form is all about. Without this kind of information, it is much harder
for the user to quickly discern the purpose of the form. We place this informa-
tion in to our editpet.jsp and now the form is much more usable than it
was previously:

<table>

<tr><td colspan=”2”>

<h2>Edit a Pet</h2>

This form will edit an existing pet. If you want to add a pet,

use a different form!

</td></tr>

<form action=”editpet.action”>

<webwork:hidden name=”pet.id” />

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:select label=”Gender” name=”pet.gender”

list=”{‘Unknown’, ‘Male’, ‘Female’}” />

<webwork:textarea label=”Description” name=”pet.description”

rows=”6” cols=”40”/>

<webwork:component label=”Birthdate” template=”datepicker.vm”

name=”pet.birthdate”>

<webwork:param name=”formname” value=”’editform’” />

</webwork:component>

<tr><td colspan=”2”>

<input type=”submit” value=”Add”>

</td></tr>

</form>

</table>

Defining Navigation, Layout, Look, and Feel 351

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 351

This does the job (albeit the HTML is getting crowded), but we’ll soon find
ourselves creating this same HTML for other forms, such as adding pets or
removing pets. Clearly, we don’t want to duplicate this style each time. We
could use a jsp:include directive, but again there is a better alternative:
SiteMesh’s inline decorator support.

As discussed in Chapter 7, SiteMesh has support for inline decoration of
content. It just so happens that this example is a perfect fit for using SiteMesh.
Why is that? Neither JSP includes nor WebWork’s component tag supports
processing the body of a tag as content to be decorated. This is where SiteMesh
really shines. Using the body of the tag as the content to be decorated is impor-
tant, as the body can be generated dynamically using other JSP tags.

Changing the previous example to use the SiteMesh decorator application
tag, the new editpet.jsp is now:

<page:applyDecorator name=”/decorators/petform.jsp”>

<page:param name=”title”>Edit a Pet</page:param>

<page:param name=”description”>

This form will edit a pet. If you want to add a pet,

use a different form!

</page:param>

<webwork:hidden name=”pet.id” />

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:select label=”Gender” name=”pet.gender”

list=”{‘Unknown’, ‘Male’, ‘Female’}” />

<webwork:textarea label=”Description” name=”pet.description”

rows=”6” cols=”40”/>

<webwork:component label=”Birthdate” template=”datepicker.vm”

name=”pet.birthdate”>

<webwork:param name=”formname” value=”’editform’” />

</webwork:component>

</page:applyDecorator>

The content of petform.jsp is now as follows:

<%@ taglib uri=”sitemesh-decorator” prefix=”decorator” %>

<table>

<tr><td colspan=”2”>

<h2><decorator:getProperty property=”title” /></h2>

<decorator:getProperty property=”description” />

</td></tr>

<form action=”editpet.action”>

<decorator:body />

<tr><td colspan=”2”>

352 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 352

<input type=”submit” value=”Edit”>

</td></tr>

</form>

</table>

Okay, what’s happening here? There are two magical things that SiteMesh is
letting us do. One we’ve already seen with WebWork: the ability to pass para-
meters to our component. The second magical thing occurring is that SiteMesh
decorators, such as petform.jsp, can pull the content inside of the
page:applyDecorator tag and insert it into the text of the decorator using the
decorator:body tag. This means that all the webwork tags have been evaluated
to HTML and are then included inside of the form we define in petform.jsp.

As you can see, editpet.jsp is passing two parameters to our decorator
(petform.jsp): title and description. These values are then used to create
the form UI elements that we desire. But we need to actually specify a couple
more parameters besides the obvious ones that affect the UI. For example,
petform.jsp cannot yet be used in other pages that require forms because it
still submits to editpet.action and its button is still displaying “Add.” This can
be easily fixed by introducing more parameters: action and button. The changes
in petform.jsp are now:

<form action=”<decorator:getProperty property=”action” />”>

<decorator:body />

<tr><td colspan=”2”>

<input type=”submit”

value=”<decorator:getProperty property=”button” />”>

</td></tr>

</form>

So, editpet.jsp now looks like this:

<%@ taglib uri=”webwork” prefix=”webwork” %>

<%@ taglib uri=”sitemesh-page” prefix=”page” %>

<html>

<head>

<title>Edit A Pet</title>

</head>

<body>

<page:applyDecorator name=”/decorators/petform.jsp”>

<page:param name=”action”>editpet.action</page:param>

<page:param name=”button”>Edit</page:param>

<page:param name=”title”>Edit a Pet</page:param>

Defining Navigation, Layout, Look, and Feel 353

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 353

<page:param name=”description”>

This form will edit a pet. If you want to add a pet,

use a different form!

</page:param>

<webwork:textfield label=”Name” name=”pet.name” />

<webwork:select label=”Gender” name=”pet.gender”

list=”{‘Unknown’, ‘Male’, ‘Female’}” />

<webwork:textarea label=”Description” name=”pet.description”

rows=”6” cols=”40”/>

<webwork:component label=”Birthdate” template=”datepicker.vm”

name=”pet.birthdate”>

<webwork:param name=”formname” value=”’editform’” />

</webwork:component>

</page:applyDecorator>

</body>

</html>

Now editpet.jsp has moved from being HTML content to being a col-
lection of components, making maintenance much easier. Notice that the only
HTML in the page is the enclosing HTML elements, which are extremely basic.
Anytime we need to display a form, we can use this decorator and give our
entire site a standardized look and feel. Any changes to petform.jsp will be
reflected throughout the site. Besides the obvious benefit of being able to put
content into our inline decorators (something jsp:includes doesn’t have an
easy time dealing with), there is another gain of not having to refer to
petform.jsp directly. A simple change in the page:applyDecorator tag to the
following lets us refer to the decorator by an alias:

<page:applyDecorator name=”petform”>

...

</page:applyDecorator>

All that we need to do is modify SiteMesh’s decorators.xml configura-
tion to indicate what this alias maps to:

<decorators defaultdir=”/decorators”>

<decorator name=”petform” page=”petform.jsp” />

</decorators>

We’ve now componentized both individual form widgets as well as the
form itself. Now let’s look at ways to customize the look and feel of the entire
page, leaving a very nice, professional style throughout the application.

354 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 354

Using a Touch of Style

Components are very powerful for Web design, but without a nice look and
feel, the application will never be fully accepted by users. Good site design is
a goal that is incredibly hard to reach and takes years of know-how in the
usability and design fields to truly understand. It’s not expected that develop-
ers such as us have this kind of experience. However, it doesn’t hurt to know a
bit about the technologies that enable good user-interface design.

A good design makes use of compatible color tones, attractive, readable
fonts, clean table layouts, and sensible image and text placement. The best way
to control these various elements is through the use of Cascading Style Sheets
(CSS). A CSS is a great way to separate the look and feel of your application
from the implementation. In an ideal world, we’d like to be able to have
graphic designers work directly on files such as editpet.jsp. But even as
simple as that file is, it’s not suitable for HTML-heads to modify directly,
because the tags can be confusing and most WYSIWYG tools don’t understand
JSP taglibs.

The solution is to write the JSPs yourself, make the HTML refer to CSS
styles, and then let graphics designers modify the style sheets to their heart’s
content. As you can see in Figures 17.1 and 17.2, applying well thought-out
style sheets to your HTML pages can make a world of a difference.

Figure 17.1 Editing a pet without CSS

Defining Navigation, Layout, Look, and Feel 355

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 355

Figure 17.2 Editing a pet with CSS

NOTE As good as CSS makes our pages look, it isn’t perfect. After all, what
technology is? Different browsers use CSS in different ways, and it is sometimes
impossible to get a page to look the same on all platforms. For example,
Netscape 4.0 has terrible support for style sheets. Likewise, small inconsistencies
can be found in different versions of Internet Explorer, as well as in Mozilla,
Opera, and Netscape. Nevertheless, style sheets are your best bet for a (mostly)
standard user interface that looks good.

Clearly, using CSS can make a big impact on your application. How does
this CSS get applied to our HTML? It’s as simple as adding a reference to our
style sheet in the HEAD element of our HTML.

<head>

<title>Edit A Pet</title>

<link rel=”stylesheet” type=”text/css” href=”/decorators/style.css”>

</head>

...

All that needs to happen now is that any HTML element (such as a table or
group of text) that needs to be specially styled must have its “class” defined.
Classes are detailed in the style sheets (style.css) and then referenced in the
HTML file itself (editpet.jsp). For example, if we want to style a table ele-
ment for when it’s supposed to look like a form, we do the following:

<table class=”form”>

...

</table>

356 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 356

Remember that because we’re now using SiteMesh to do form componenti-
zation, this change only happens in one place: petform.jsp. Likewise, the
default WebWork UI templates (such as textfield, select, and so on) all have
predefined CSS classes that you can override in your style sheets. Suddenly,
graphic designers have much more control over the style of your application
than it previously appeared.

Defining classes for each HTML element may seem like a lot of work — and
it can be. But it’s important that you don’t rely on only the style sheet to dictate
the user interface’s look and feel. While it is possible to use CSS to control the
look of all tables, doing that is probably undesirable if you are only trying to
make the look of a form. Investing some upfront time in the types of items in
your pages you’d like to style will allow designers to have more control over
the user interface than just the HTML element types such as table, font, h1, p,
and others.

You can probably consult with your graphic designer to determine when
unique classes should be defined and when styles can be applied to all element
types. For example, using classes for tables is generally a good idea because
tables are used in numerous places in your pages, and stylizing all of them
would probably not turn out as expected. On the other hand, styling all para-
graph tags (<p>) might not have an adverse effect on the user interface.

A sample of the style sheet used for PetSoar is shown here:

/* Standard HTML elements */

h1 {

font-size: 19pt;

font-weight: normal;

color: #1f4ca5;

font-family: arial;

}

h2 {

font-size: 13pt;

color: #663366;

font-family: arial;

}

/* Form style table */

.form {

border: 1px solid;

border-color: buttonshadow;

background-color: #eeeeee;

}

.form td, .form th {

vertical-align: top;

font: menu;

padding: 5;

}

.form th {

text-align: left;

Defining Navigation, Layout, Look, and Feel 357

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 357

font-weight: bold;

background-color: #dddddd;

}

.form .errorRow input {

background-color: #ffcccc;

}

.form .label {

font-weight: bold;

}

.form .error {

color: red;

}

.form input, .form select, .form textarea {

font: menu;

}

The form-related styles are specifically for the petform.jsp decorator as
well as the styles that WebWork supports by default. Now, error messages will
show up as dark-red text on a light-red background, and labels will show up
as bold. Pretty neat!

Fully understanding and taking advantage of CSS is well beyond the scope
of this book. There are many great HTML design books that can teach you the
ins and outs of advanced Web-page design, but this should give you a general
overview and show you why knowledge of this technology is important to
developers such as yourself.

The one thing that is perplexing with CSS is that the style sheet must be
referenced in every single HEAD tag. This leaves open the possibility of for-
getting to make the link or a typo in the link, resulting in a non-stylized page.
We will now discuss ways to avoid this problem as well as discuss advanced
ways to provide for a consistent layout and navigation.

Navigating to a Better User Interface

While we find that CSS is a great technology for making clean, beautiful Web
pages, we’ve also seen that it can sometimes be tricky to set up, especially in
large applications where there are hundreds of HTML and JSP pages. We need
to find a way to link the style sheet to each and every page in a consistent man-
ner. Not only that, but, in general, we probably want to have the same headers
and footers on every page so that there is a consistent navigation throughout.

The knee-jerk reaction to this problem is again to use jsp:include. But
once again, while jsp:include does help alleviate this problem, there are better

358 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 358

solutions! Before jumping into the alternatives, let’s look at how we can tackle
this problem using includes. Here is what a sample HTML file might look like.

<html>

<jsp:include page=”/includes/header.jsp”>

<jsp:param name=”title” value=”PetSoar – Edit a Pet”/>

</jsp:include>

normal HTML and JSP tags go here.

<jsp:include page=”/includes/footer.jsp”/>

</html>

Now let’s look at how this would be done using SiteMesh, as discussed in
Chapter 7:

<html>

<head>

<title>Edit a Pet</title>

</head>

normal HTML and JSP tags go here.

</html>

The second example is so much simpler and cleaner because we no longer
have to make explicit calls to include content. Instead, SiteMesh passively is
parsing the HTML your page evaluates to and modifying it to display a stan-
dard look and feel (such as navigation bars, headers, footers, titles, and, of
course, correct links to style sheets).

Some other advantages of decorators over includes are:

■■ Includes must be tightly bound to every single JSP.

■■ Includes don’t work for non-JSP content, such as HTML or XML con-
verted to HTML, or even non-Java technologies such as Perl or PHP.

■■ Includes are very static. Changing their behavior at runtime is not the
most straightforward task.

Because SiteMesh parses existing HTML and integrates it into decorators,
which are also complete HTML files, the job for site designers is much easier
now. Rather than have to deal with includes that hide away basics such as
TITLE and HEAD tags, designers can work with more complete HTML files.
However, depending on your ratio of normal HTML to JSP tags, this may or
may not be a major benefit for you.

Defining Navigation, Layout, Look, and Feel 359

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 359

Here is an extremely trimmed-down version of the actual PetSoar decorator,
just to give you a taste of how decorators can be used:

<%@ taglib uri=”sitemesh-decorator” prefix=”decorator” %>

<html>

<head>

<title>PetSoar - <decorator:title default=”Your Pet Store” /></title>

<link rel=”stylesheet” type=”text/css” href=”/decorators/style.css”>

<decorator:head />

</head>

<body>

<table>

<tr>

<!-- Start Menu Items -->

<td>

Inventory

Pets

</td>

<!-- End Menu Items -->

<td>

<decorator:body />

</td>

</tr>

</table>

</body>

</html>

Let’s examine what this decorator is doing:

■■ Style sheet linking — Now any page that uses this decorator will auto-
matically link to the correct style sheet, without even knowing it.

■■ Consistent titles — Every page will have a title of “PetSoar - “ followed
by the actual page title or, if it wasn’t specified, PetSoar’s extremely
catchy tagline: “Your Pet Store.”

■■ Uses HEAD elements — Any additional HEAD element other than the
title, such as links to special JavaScript files, will automatically be
added. This allows each page to retain its individuality while also
maintaining a standard look.

■■ Provides a common navigation — The menu items will be displayed on
every page, providing for a very easy-to-understand and consistent
navigation scheme.

360 Chapter 17

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 360

All that is left to do is to configure which pages get this decoration. For Pet-
Soar, we’d like all pages to look the same way, so it’s a very trivial URL pattern
that we will map against:

<decorators defaultdir=”/decorators”>

<decorator name=”main” page=”main.jsp”>

<pattern>*</pattern>

</decorator>

</decorators>

In your applications, you might require different decorators for different
parts of your application. For example, the administrative interface might look
different from the rest of the Web pages. All you need to do this is to map
“/admin/*” to your admin.jsp decorator page. Because of this, structuring
your JSPs and HTML files in a manner that allows for simple URL patterns can
prove to be very valuable. As discussed in Chapter 7, there are other kinds of
“decorator mappers” that provide much more functionality than demon-
strated here.

Summary

In this chapter, we took the very simple HTML examples from Chapter 16 and
began to explore various ways we can make them more maintainable, but also
good-looking at the same time. By using tag libraries supplied by WebWork
and SiteMesh, as well as some simple design practices such as abstraction, we
were able to make all the PetSoar JSPs much more maintainable by removing
all levels of duplication.

We then looked at Cascading Style Sheets and showed how we could take
advantage of their power and leverage their decoupled nature to provide
externalized look-and-feel control. Then, using SiteMesh, we showed how
some of the limitations of style sheets (such as the requirement to be linked in
every page) can be overcome. Finally, we looked at ways to provide standard
headers, footers, and navigation bars in PetSoar using standard jsp:include
tags as well as more advanced techniques involving SiteMesh.

Defining Navigation, Layout, Look, and Feel 361

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 361

21 463620 Ch17.qxd 10/28/03 8:50 AM Page 362

363

In the previous chapters, we focused on the domain model of the PetSoar
application and the view and user interface layout portions of it. In this chap-
ter, we implement two of the most important parts of a pet-store site: browsing
and searching.

Defining the Application Requirements

It must be possible to view all available Pets and categories and easily navigate
through the list. Because there may be a large number of Pets in the store, it
should also be possible to view the lists in a paginated way, like most Web-
based user interfaces do. So, by using the pagination mechanism, the user
would be able to view the list in smaller chunks (ten items per page, for exam-
ple) and easily navigate among these pages.

A searching system is also essential to our application. Without an effective
searching mechanism, users can’t find their favorite Pet in our rich list of
offered Pets. It should be possible to search the list of Pets and categories with
friendly English queries. In other words, we need a smart, full-text searching
mechanism for the site.

Implementing Browse and
Search Capabilities

C H A P T E R

18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 363

Browsing the List of Categories

To get started, we will create a ListCategories action class. It’s a WebWork com-
mand object and encapsulates the category retrieval logic. As usual, we start
with the test:

[TestListCategories.java]

public class TestListCategories extends TestCase {

public void testListCategories() throws Exception {

// setup

ListCategories action = new ListCategoriesAction();

// execute

String result = action.execute();

// verify

assertEquals(Action.SUCCESS, result);

}

}

Okay, so we have a test, but it doesn’t compile yet. To get it to compile, we
create ListCategories:

[ListCategories.java]

public class ListCategories implements Action {

public String execute() {

// todo

return SUCCESS;

}

}

The test hasn’t actually tested all the categories that have been retrieved. We
should first add some categories to the store and then test that the action
retrieves them all. We don’t need to test whether PetStore performs Category
retrieval correctly; we have already created tests for that code in Chapter 15.
The only thing we need to test is that ListCategories interacts with PetStore
correctly. We can create a mock PetStore object, pass it to the ListCategories
object, and verify that ListCategories works with PetStore correctly.

[TestListCategories.java]

public class TestListCategories extends TestCase {

public void testListCategories() throws Exception {

// setup

List categories = createSomeCategories();

364 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 364

Mock mockPetStore = new Mock(PetStore.class);

mockPetStore.matchAndReturn(“getCategories”, categories);

ListCategories action = new ListCategories();

action.setPetStore((PetStore)mockPetStore.proxy());

// execute

String result = action.execute();

// verify

assertEquals(Action.SUCCESS, result);

assertEquals(categories, action.getCategories());

}

private List createSomeCategories() {

Category category = new Category();

category.setId(123);

category.setName(“Dogs”);

List result = new ArrayList();

result.add(category);

return result;

}

}

The test testListCategories first creates a Category object and config-
ures the getCategories() method of the mock PetStore to return a List con-
taining that single Category instance. Finally, we verify that the same List is
returned from the getCategories()method after executing the action object.

Of course, the tests won’t pass at this point because we haven’t imple-
mented anything useful yet. Following a few TDD cycles, we get a Green Bar
with the following implementation:

public class ListCategories implements Action, PetStoreAware {

private List categories;

private PetStore petStore;

public List getCategories() {

return categories;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public String execute() {

categories = petStore.getCategories();

return SUCCESS;

}

}

Implementing Browse and Search Capabilities 365

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 365

We’re now finished implementing the retrieval of the categories of the store.
The next thing to do is implement retrieval of all Pets of a specific Category.

Browsing the List of Pets

Users should be able to browse the list of Pets we offer at our store. It should
be possible to browse all Pets at once or only Pets of the category the user has
selected.

We will first implement the feature that lets the user browse all Pets offered
in our site. Then we will implement the feature that makes it possible to
browse all Pets of the currently selected category.

We will now introduce a new test class named TestSListPets and a
testListAllPets() method in it that tests the correctness of the ListPets
class. ListPets is a WebWork action class responsible for performing retrieval
of Pets. We introduced the PetStore class in Chapter 15. ListPets uses PetStore
for retrieving all the Pets available in the store. We use a mock object for the
PetStore instead of using a concrete implementation of it (such as DefaultPet-
Store, which in turn uses HibernatePersistenceManager to load the Pets from
a relational database). By using a mock object, we can test the interaction
between ListPets and PetStore in isolation from the rest of the system.

[TestListPets.java]

public class TestListPets extends TestCase {

public void testListAllPets() throws Exception {

// setup

List pets = createSomePets();

Mock mockPetStore = new Mock(PetStore.class);

mockPetStore.matchAndReturn(“getPets”, pets);

ListPets action = new ListPets();

action.setPetStore((PetStore)mockPetStore.proxy());

// execute

String result = action.execute();

// verify

assertEquals(Action.SUCCESS, result);

assertEquals(pets, action.getPets());

}

private List createSomePets() {

Pet pet = new Pet();

366 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 366

pet.setId(123);

pet.setName(“Dog”);

List result = new ArrayList();

result.add(pet);

return result;

}

}

Since this test is similar to the previous one, we can switch gears and move
faster. We add the remaining missing bits and run the test. Here is what the
final implementation of ListPets looks like:

[ListPets.java]

public class ListPets implements Action, PetStoreAware {

private PetStore petStore;

private List pets;

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public String execute() throws Exception {

pets = petStore.getPets();

return SUCCESS;

}

public List getPets() {

return pets;

}

}

We run the test and Green Bar!
We can now move to the second scenario: browsing Pets of a specific Cate-

gory. We expect ListPets to return only Pets of a specific Category if the ID of a
specific Category is given and to return ERROR if the Category cannot be
found. We create two new test methods:

[TestListPets.java]

public void testListPetsOfCategory() throws Exception {

// setup

Pet pet = new Pet();

pet.setId(456);

pet.setName(“Dog”);

Category category = new Category();

category.setId(123);

category.addPet(pet);

Mock mockPetStore = new Mock(PetStore.class);

Implementing Browse and Search Capabilities 367

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 367

mockPetStore.expectAndReturn(“getCategory”, new Long(123), category);

ListPets action = new ListPets();

// execute

action.setCategoryId(123);

String result = action.execute();

// verify

assertEquals(Action.SUCCESS, result);

mockPetStore.verify();

assertEquals(category.getPets(), action.getPets());

}

public void testListPetsOfAnUnknownCategory() throws Exception {

Mock mockPetStore = new Mock(PetStore.class);

mockPetStore.expectAndReturn(“getCategory”, new Long(666), null);

ListPets action = new ListPets();

// execute

action.setCategoryId(666);

String result = action.execute();

// verify

assertEquals(Action.ERROR, result);

mockPetStore.verify();

assertNull(action.getPets());

}

The new testListPetsOfCategory() method first creates a Pet object
and adds it to new Category instance, which has an ID of 123. We then config-
ure the mock PetStore instance to return this new Category object when its
getCategory() method is called with an argument of 123. In addition to
configuring the Mock object to return the newly created Category object,
expectAndReturn() also verifies that getCategory() was actually called
with the arguments declared as its second argument. We also need to tell the
ListPets action we’re looking for Pets of a Category that has an ID of 123
by calling its setCategoryId() method. To complete our test, we now
just need to assert that getPets() returns the Pets we expect to be in the 123
Category.

On the other hand, for our second test, testListPetsOfAnUnknown
Category(), all we need do is set a fictitious Category ID (666), then assert
that there are no Pets retrieved and the action returns an ERROR.

368 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 368

Following the standard TDD process, we implement until we have a Green
Bar and the final result ends up as:

[ListsPets.java]

public class ListPets implements Action, PetStoreAware {

private PetStore petStore;

private List pets;

private long categoryId;

public void setCategoryId(long categoryId) {

this.categoryId = categoryId;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public String execute() throws Exception {

if (categoryId != 0) {

Category parentCategory = petStore.getCategory(0);

pets = parentCategory.getPets();

}

else {

pets = petStore.getPets();

}

return SUCCESS;

}

public List getPets() {

return pets;

}

}

We have an action class for retrieving all Pets or only Pets of a specific
Category, as well as tests to cover all possible cases. We can now concentrate
on the next requirement: searching Pets.

Searching the Store for Pets

To get started, we will create a Search action class. It’s a WebWork command
object and encapsulates the searching logic. It must accept a query String and
return a list of search hits.

Implementing Browse and Search Capabilities 369

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 369

As usual, we start with a test. We want to search for a Pet and retrieve a list
of matched Pets:

[TestSearch.java]

public class TestSearch extends TestCase {

public void testSearch() throws Exception {

Search action = new Search();

action.setQuery(“dog”);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

}

}

But this test is not sufficient. It hasn’t actually tested that the query was exe-
cuted correctly and that the expected search result was returned. There are two
ways we can ensure the search operation was performed correctly.

■■ Allow the Search class to conduct the Lucene API and actually run the
query.

■■ Don’t test the Lucene searching logic itself. Rather, test that the Search
class made the correct method calls to the underlying searching mecha-
nism and returned the expected results according to the contract.

We settle on the second approach because it provides a good way to layer
the responsibilities of our code and allows us to take baby steps when writing
tests and corresponding implementations.

To separate the underlying searching mechanism from our high-level Search
action class, we define a Searcher interface. The Search class delegates the
actual searching operation to the specified Searcher instance, as the following
code shows:

[Searcher.java]

public interface Searcher {

/**

* Performs the search operation and returns a List of found items.

*/

List search(String query);

}

[StoreFrontSearch.java]

public class StoreFrontSearch extends ActionSupport {

370 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 370

private Searcher searcher;

public Searcher getSearcher() {

return searcher;

}

public void setSearcher(Searcher searcher) {

this.searcher = searcher;

}

public String execute(String query) throws Exception {

// todo

return SUCCESS;

}

}

We enhance our previous test by introducing Searcher. We haven’t written
any concrete Searcher implementation yet, and we’re not concerned about its
implementation details in this stage. As such, we create a mock Searcher for
our tests:

[TestSearch.java]

public class TestSearch extends TestCase {

public void testSearch() throws Exception {

// setup

List pets = createSomePets();

Mock mockSearcher = new Mock(Searcher.class);

mockSearcher.expectAndReturn(“search”,”dog”,pets);

Search action = new Search();

action.setSearcher((Searcher)mockSearcher.proxy());

// execute

action.setQuery(“dog”);

String result = action.execute();

// verify expectation has been met

mockSearcher.verify();

assertEquals(“success”, result);

assertNotNull(action.getPets());

assertEquals(1,action.getPets().size());

assertEquals(pet,action.getPets().get(0));

}

private List createSomePets() {

Pet pet = new Pet();

Implementing Browse and Search Capabilities 371

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 371

pet.setId(123);

pet.setName(“Billy”);

List result = new ArrayList();

result.add(pet);

return result;

}

}

We create a mock Searcher instance in setUp() and then expect to see
Searcher’s search() method called with an argument of “dog” by Search.
When that call is made by Search, the mock object returns the Pets List that we
created and contains a single Pet object that has an ID of 123. Finally, we assert
that Search executes successfully, returns SUCCESS, and that its search result
is the Pets List that we configured Searcher to return.

Now the code compiles, and we can run the test. Red Bar!

search() was expected but not called

It means it expected the search() method to be called, but it never was.
This is the expected behavior and validates that our test is indeed testing a
new feature. The next step is, of course, to write code until this test passes. We
can do this by allowing Search to correctly delegate the searching operation to
Searcher:

public String execute() throws Exception {

setPets(searcher.search(query));

return SUCCESS;

}

Now the code compiles; we can run the test. Green Bar! So far, we’ve defined
the contract of Search. We’ve also separated the high-level WebWork action
from the actual implementation of the searching logic by defining a separate
Searcher interface. It’s time to move on to creating a concrete implementation
for Searcher that uses Lucene.

Implementing LuceneSearcher
We start by defining the test case as well as a LuceneSearcher class that will
pass the tests. We need to let LuceneSearcher know where to expect to find the
index files. We do that by specifying its indexDir property.

372 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 372

NOTE Unlike in the previous tests, we don’t use mock objects here because
we want to actually test the Lucene searching logic. Because we aren’t using in-
memory mock objects, these unit tests will run a bit slower than the average
test. As explained in Chapter 12, this is a perfect candidate to belong to the
SlowUnitTestSuite rather than the normal test suite that runs much faster.

[TestLuceneSearcher.java]

public class TestLuceneSearcher extends TestCase {

private LuceneSearcher luceneSearcher;

private File indexDir;

protected void setUp() throws Exception {

luceneSearcher = new LuceneSearcher();

// assume index files are stored under the system temp directory

File tmpDir = new File(System.getProperty(“java.io.tmpdir”));

indexDir = new File(tmpDir, “test-index”);

indexDir.mkdir();

luceneSearcher.setIndexDir(indexDir.getAbsolutePath());

}

public void testSimpleSearch() throws Exception {

List searchHits = luceneSearcher.search(“\”dog\””);

assertNotNull(searchHits);

assertEquals(1, searchHits.size());

}

}

Stubbing LuceneSearch, we end up with:

[LuceneSearcher.java]

public class LuceneSearcher implements Searcher {

private String indexDir;

private String query;

public void setIndexDir(String indexDir) {

this.indexDir = indexDir;

}

private String getIndexDir() {

return indexDir;

}

// implemented from Searcher interface

public String getQuery() {

Implementing Browse and Search Capabilities 373

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 373

return query;

}

public void setQuery(String query) {

this.query = query;

}

public List search() {

// todo: use Lucene’s API to perform searching

return null;

}

}

As expected, the test fails with a Red Bar. To get the tests to pass, the mini-
mum amount of code we can write involves calling Lucene’s IndexSearcher
class for querying the index. Here is the code:

public List search() {

QueryParser qp = null;

Query myquery = null;

try {

qp = new QueryParser(“description”,createAnalyzer());

myquery = qp.parse(query);

} catch (Exception e) {

throw new LuceneException(“Couldn’t parse the query:”+

e.getMessage());

}

IndexSearcher searcher = null;

try {

searcher = createSearcher();

Hits hits = searcher.search(myquery);

List result = new ArrayList(hits.length());

for (int i = 0; i < hits.length(); i++) {

Document doc = hits.doc(i);

result.add(Long.valueOf(doc.get(“handle”)));

}

return result;

} catch (Exception e) {

throw new LuceneException(“Couldn’t complete search”,e);

} finally {

try {

if (searcher != null) {

374 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 374

searcher.close();

}

} catch(IOException e) {

throw new LuceneException(“Couldn’t complete search”,e);

}

}

}

public IndexSearcher createSearcher() throws IOException {

return new IndexSearcher(getDirectory(false));

}

protected Directory getDirectory(boolean create) throws IOException {

return FSDirectory.getDirectory(indexDir, create);

}

private Analyzer createAnalyzer() {

return new StandardAnalyzer();

}

This is typical Lucene querying code similar to the code we’ve seen before
in Chapter 8. A QueryParser is first created, and then the query is parsed. Next,
an IndexSearcher is created and initialized with the parsed query. Finally, a
search is performed. Note that we’re using the simplest Analyzer type, Stan-
dardAnalyzer, which is enough for our purpose of getting the test pass.

Note that the LuceneSearcher.search() method actually returns a List
containing objects of type Long. Earlier in this chapter, we tested the interac-
tion between StoreFrontSearch and Searcher by assuming that Searcher
returns a List of Pets. But as you can see here, we create a List of Longs rather
than Pets. TestStoreFrontSearch is not broken, because it uses a mock Searcher
object instead of a LuceneSearcher instance, and that mock is correctly set up
to return a List of Pets.

Another design possibility here would be returning a value object contain-
ing all indexed fields. For example a SearchHitValueObject could be returned
in the List, containing the values of indexed fields such as name and descrip-
tion. The advantage of using this value object is that the indexed fields are
retrieved from Lucene very fast, and this saves us the performance hit of going
to the PersistenceManager to load a Pet object for each search result.

The disadvantage of using a SearchHitValueObject is that there are now two
domain objects representing a Pet. This means we need different view compo-
nents for general browsing and showing search results (one using Pet, the
other using SearchHitValueObject), causing duplication in our view layer.

In our case, we have chosen to design both the search and browse capabili-
ties to use the same Pet domain object because it leads to cleaner code. We

Implementing Browse and Search Capabilities 375

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 375

don’t need to be overly concerned with the performance of accessing Persis-
tenceManager repeatedly to retrieve domain objects here because most of
these accesses should be cached.

The only tricky design issue is exactly where to ask the PersistenceManager
for the relevant Pet object from the search results. LuceneSearcher is not the
right place, because the search facility should not have dependency on the
PersistenceManager. They are both low-level components of the system and
should be kept independent of each other. So, we return a List of Longs, and
the client is responsible for asking the PersistenceManager for the correspond-
ing Pet object. Later in this chapter, we’ll show a neat way to handle this issue
without burdening the WebWork action with this task.

Everything looks correct, so let’s run the test again. Red Bar!

java.io.IOException: C:\temp\test-index not a directory

at org.apache.lucene.store.FSDirectory.<init>(Unknown Source)

at org.apache.lucene.store.FSDirectory.getDirectory(Unknown Source)

at org.apache.lucene.store.FSDirectory.getDirectory(Unknown Source)

at org.apache.lucene.index.IndexReader.open(Unknown Source)

at org.apache.lucene.search.IndexSearcher.<init>(Unknown Source)

at org.petsoar.search.lucene.LuceneSearcher.search(LuceneSearcher

.java:108)

at org.petsoar.search.lucene.TestLuceneSearcher.TestStoreFrontSearch

(TestLuceneSearcher.java:74)

This is happening because there is no test-index directory. Recall that we
specified this directory as the directory where IndexSearcher should expect to
find the indexed files. Of course, there is no directory because we never cre-
ated it, nor did we index any documents. To do this, we will now focus on
writing a LuceneIndexer class.

Note here that we’re doing things a little backward to what you might
expect. Normally, indexing comes before searching; after all, you can’t search
without having indexed first. However, in our case, TDD dictates the flow of
design, and because we started with StoreFrontSearch, we are writing the
Searcher before the Indexer. Let’s look at the Indexer now.

Implementing LuceneIndexer
A user must be able to search any information item in the pet store. Since we

have a nice domain model behind the application, we naturally want to index
those domain objects for faster and more robust searching. LuceneIndexer
should be able to accept Pet, Category, or any other object and create Lucene
index files for them.

376 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 376

Another important thing we should consider is updating the index when-
ever the domain objects change. Deleting a domain object should delete the
indexed document from the index files as well.

We start with a test, implementing the easiest scenario: indexing newly cre-
ated Pet objects. We should let LuceneIndexer know where to create the index
files. We do that by specifying the indexDir property.

[TestLuceneIndexer.java]

public class TestLuceneIndexer extends TestCase {

private LuceneIndexer luceneIndexer;

private File indexDir;

protected void setUp() throws Exception {

luceneIndexer = new LuceneIndexer();

// assume index files are stored under the system temp directory

File tmpDir = new File(System.getProperty(“java.io.tmpdir”));

indexDir = new File(tmpDir, “test-index”);

indexDir.mkdir();

luceneIndexer.setIndexDir(indexDir.getAbsolutePath());

}

public void testIndexNewObject() throws Exception {

Pet pet = createDog();

luceneIndexer.index(pet);

}

private Pet createDog() {

Pet pet = new Pet();

pet.setId(123);

pet.setName(“dog”);

pet.setPersonality(“dog”);

pet.setDescription(“dog”);

return pet;

}

}

We first create a LuceneIndexer object and set the indexDir property. The
testIndexNewObject() method creates a new Pet instance and then tells
the LuceneIndexer instance to index it. We can’t yet run the test, because we
haven’t written LuceneIndexer yet. So, we create it.

Implementing Browse and Search Capabilities 377

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 377

[LuceneIndexer.java]

public class LuceneIndexer {

private String indexDir;

private IndexWriter indexWriter;

public void setIndexDir(String indexDir) {

this.indexDir = indexDir;

}

private String getIndexDir() {

return indexDir;

}

public synchronized void index(Object obj) {

Analyzer analyzer = createAnalyzer();

IndexWriter writer = createWriter(analyzer);

try {

Document doc = createDocument(obj);

writer.addDocument(doc);

writer.optimize();

} finally {

writer.close();

}

}

private IndexWriter createWriter(Analyzer analyzer)

throws IOException {

return new IndexWriter(getDirectory(false),analyzer,false);

}

protected Directory getDirectory(boolean create)

throws IOException {

return FSDirectory.getDirectory(indexDir,create);

}

private Analyzer createAnalyzer() {

return new StandardAnalyzer();

}

public Document createDocument(Object obj) {

Document doc = new Document();

return doc;

}

}

The index() method accepts an Object and, you guessed it, indexes it. To
do so, first a Lucene IndexWriter should be created, so the createWriter()
method is called. This method creates an IndexWriter that puts the indexed
files in the directory that the indexDir property points to. An Analyzer object
should be specified for the IndexWriter, so the createAnalyzer() method

378 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 378

is called that creates the simplest kind of analyzer we can use, the
StandardAnalyzer. Now we create a Lucene Document for the object we are
trying to index, add it to the index by invoking addDocument() on the
IndexWriter, and finally close the writer by calling its close() method
(which frees all allocated resources).

It seems like everything is ready, and we can run the test finally. Green Bar!
However, we’re not really sure that the index files are actually updated. We
can enhance the test and verify that a document was added to the index:

public void testIndexNewObject() throws Exception {

Pet pet = createDog();

luceneIndexer.index(pet);

IndexReader indexReader = createReader();

assertEquals(1,indexReader.numDocs());

indexReader.close();

}

private IndexReader createReader() throws IOException {

// assume index files are stored under the system temp directory

File tmpDir = new File(System.getProperty(“java.io.tmpdir”));

indexDir = new File(tmpDir, “test-index”);

indexDir.mkdir();

return IndexReader.open(indexDir.getAbsolutePath());

}

An IndexReader is opened on the specified index directory. Then we verify
that a single document exists in the index directory by asserting that
indexReader.numDocs does indeed return 1.

We run the test again, and Green Bar! This means that the Pet we created is
actually added to the index. It seems like we’re done with the LuceneInexer.
The index files are created. We can go back to our LuceneSearcher test and run
it again. Recall TestLuceneSearcher:

[TestLuceneSearcher.java]

public class TestLuceneSearcher extends TestCase {

...

public void testSimpleSearch() throws Exception {

List searchHits = luceneSearcher.search(“\”dog\””);

assertNotNull(searchHits);

assertEquals(1,searchHits.size());

}

}

We run it again. Red Bar!

expected: 1 but was: 0

Implementing Browse and Search Capabilities 379

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 379

So, although the index files are there and they contain a Document, the
search fails to find anything for the query we gave it.

The reason for this failing test is that the query returns no result because the
indexed document contains incorrect data. Let’s go back and review the piece
of code in LuceneIndexer that created the Document object:

public Document createDocument(Object obj) {

Document doc = new Document();

return doc;

}

The document is effectively empty. It contains no fields, no data! We should
fill it with correct data by adding some Lucene Fields to it. Let’s take the short-
est path:

public Document createDocument(Object obj) {

Document doc = new Document();

Pet pet = (Pet) obj;

doc.addField(Field.Keyword(“handle”, pet.getId());

doc.addField(Field.Text(“name”, pet.getName());

doc.addField(Field.Text(“description”, pet.getDescription());

return doc;

}

We have hard-coded the Pet type here. Obviously, with this strategy, we
can’t index Category or any other arbitrary object. We note this limitation and
just hard-code the Pet type for now. We want to write the least code to make
the test pass. Later, we can extend functionality for any type of object.

To make sure the document contains the correct field values, we enhance the
test in TestLuceneIndexer:

public void testIndexNewObject() throws Exception {

Pet pet = createDog();

luceneIndexer.index(pet);

IndexReader indexReader = luceneIndexer.openIndexReader();

assertEquals(1, indexReader.numDocs());

Document doc = indexReader.document(0);

assertEquals(“123”, doc.get(“handle”));

assertEquals(“dog”, doc.get(“name”));

assertEquals(“dog”, doc.get(“description”));

indexReader.close();

}

Green Bar!

380 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 380

We go back to TestLuceneSearcher and run it again. Green Bar as well!
Notice that the behavior of TestLuceneSearcher is dependent on the output

of TestLuceneIndexer. In other words, if we don’t run TestLuceneIndexer before
running TestLuceneSearcher, TestLuceneSearcher fails. It clearly violates one
of the most important rules of unit testing:

Unit tests should be independent of each other.

That’s not the only place we made mistakes. We didn’t clean the created
index files. If we run the test again, the new documents would be added to the
existing index files and the tests would fail. We violated another golden rule:

Successive runs of a unit test shouldn’t depend on the output from previous runs
of the test.

With some small changes to TestLuceneSearcher, we can make sure that it is
not dependent on the output of TestLuceneIndexer. That, of course, doesn’t
mean we abandon TestLuceneIndexer, as it is a granular test for LuceneIndexer
and is still very valuable. Also, we change both tests to make sure the old index
files are deleted when we run any of the two tests again. TestLuceneIndexer
now has an added tearDown() method:

public class TestLuceneIndexer extends TestCase {

...

protected void tearDown() throws Exception {

indexDir.delete();

}

...

}

After the test is run, teardown() is called and we clean up after ourselves
by deleting the index directory that was created during the test.

We do the same for TestLuceneSearcher, too, but we also create a fresh index
in the setUp() method:

[TestLuceneSearcher.java]

public class TestLuceneSearcher extends TestCase {

...

protected void setUp() throws Exception {

luceneSearcher = new LuceneSearcher();

// assume index files are stored under the system temp directory

File tmpDir = new File(System.getProperty(“java.io.tmpdir”));

indexDir = new File(tmpDir, “test-index”);

indexDir.mkdir();

luceneSearcher.setIndexDir(indexDir.getAbsolutePath());

luceneIndexer = new LuceneIndexer();

Implementing Browse and Search Capabilities 381

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 381

luceneIndexer.setIndexDir(indexDir.getAbsolutePath());

Pet dog = new Pet();

dog.setId(111);

dog.setName(“dog”);

dog.setImage(“dog”);

dog.setDescription(“dog”);

luceneIndexer.index(dog);

Pet cat = new Pet();

cat.setId(112);

cat.setName(“cat”);

cat.setImage(“cat”);

cat.setDescription(“cat”);

luceneIndexer.index(cat);

Pet dogy = new Pet();

dogy.setId(113);

dogy.setName(“dogy”);

dogy.setImage(“dogy”);

dogy.setDescription(“dogy”);

luceneIndexer.index(dogy);

}

protected void tearDown() throws Exception {

indexDir.delete();

}

...

}

Now TestLuceneSearcher is not dependent on any preexisting index files
generated by TestLuceneIndexer, because some test objects are created and
indexed in the setUp() method.

There’s another bit of refactoring we can do to remove some code duplica-
tion. Notice how both LuceneIndexer and LuceneSearcher work with the
index directory and duplicate the code responsible for creating IndexWriter
objects. So, we extract this code to a separate class called LuceneIndexStore:

[LuceneIndexStore.java]

public class LuceneIndexStore {

private static final String DEFAULT_INDEX_DIR = “index”;

private final String indexDir;

private IndexWriter indexWriter;

public LuceneIndexStore() {

this(DEFAULT_INDEX_DIR);

382 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 382

}

public LuceneIndexStore(String indexDir) {

this.indexDir = indexDir;

try {

new IndexWriter(getDirectory(true), null, true).close();

} catch (IOException e) {

throw new LuceneException(“Cannot create index directory”,

e);

}

}

public IndexReader createReader() throws IOException {

return IndexReader.open(getDirectory(false));

}

public IndexWriter createWriter(Analyzer analyzer)

throws IOException {

return new IndexWriter(getDirectory(false), analyzer, false);

}

public IndexSearcher createSearcher() throws IOException {

return new IndexSearcher(getDirectory(false));

}

public int getNumDocs() throws IOException {

IndexReader reader = createReader();

int result = reader.numDocs();

reader.close();

return result;

}

protected Directory getDirectory(boolean create)

throws IOException {

return FSDirectory.getDirectory(indexDir, create);

}

}

Now we just need to change LuceneIndexer and LuceneSearcher to use this
new class instead of the old duplicated code:

public class LuceneIndexer {

private LuceneIndexStore indexStore;

public void setIndexStore(LuceneIndexStore indexStore) {

this.indexStore = indexStore;

}

public synchronized void index(Object obj) {

try {

Implementing Browse and Search Capabilities 383

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 383

Analyzer analyzer = createAnalyzer();

IndexWriter writer = indexStore.createWriter(analyzer);

try {

Document doc = createDocument(obj);

writer.addDocument(doc);

writer.optimize();

} finally {

writer.close();

}

} catch (IOException e) {

throw new LuceneException(“Cannot update index”, e);

}

}

...

}

And in LuceneSearcher:

public class LuceneSearcher {

private LuceneIndexStore indexStore;

private String query;

public void setIndexStore(LuceneIndexStore indexStore) {

this.indexStore = indexStore;

}

public List search() {

QueryParser qp = null;

Query myquery = null;

try {

qp = new QueryParser(“description”,createAnalyzer());

myquery = qp.parse(query);

} catch (Throwable e) {

throw new LuceneException(“Couldn’t parse the query:”+

e.getMessage());

}

IndexSearcher searcher = null;

try {

searcher = indexStore.createSearcher();

Hits hits = searcher.search(myquery);

List result = new ArrayList(hits.length());

for (int i = 0; i < hits.length(); i++) {

Document doc = hits.doc(i);

result.add(Long.valueOf(doc.get(“handle”)));

}

384 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 384

return result;

} catch (Throwable e) {

throw new LuceneException(“Couldn’t complete search”,e);

} finally {

try {

if (searcher!=null) {

searcher.close();

}

} catch(IOException e) {

throw new LuceneException(“Couldn’t complete search”,e);

}

}

}

...

}

The test cases also duplicate some code related to creating the LuceneIndexer
object and the indexDir attribute. So, we remove the duplication by introduc-
ing a base class for both test cases:

[LuceneTestCase.java]

public abstract class LuceneTestCase extends TestCase {

protected LuceneIndexer luceneIndexer;

protected LuceneSearcher luceneSearcher;

protected LuceneIndexStore indexStore;

private File indexDir;

protected void setUp() throws Exception {

File tmpDir = new File(System.getProperty(“java.io.tmpdir”));

indexDir = new File(tmpDir, “test-index”);

indexDir.mkdir();

indexStore = new LuceneIndexStore(indexDir.getAbsolutePath());

luceneIndexer = new LuceneIndexer();

luceneIndexer.setIndexStore(indexStore);

luceneSearcher = new LuceneSearcher();

luceneSearcher.setIndexStore(indexStore);

}

protected void tearDown() throws Exception {

indexDir.delete();

}

}

Implementing Browse and Search Capabilities 385

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 385

We can safely remove setUp() and tearDown() from TestLuceneIndexer
and TestLuceneSearcher and extend them from LuceneTestCase.

Where We Are
We can index Pets and query them. Both LuceneIndexer and LuceneSearcher
perform their jobs perfectly, and all tests are well written and independent of
each other, and successive runs produce the same result. We now have clean
code and an effective model for indexing objects and querying them.

So, are we done? No, not yet. Recall that our application requirement states
that it should be possible to search for both Pets and Categories. We tested it
for Pets only. It also states that we support full text searches, yet we support
only simple searches because we used the simplest kind of analyzer possible.
We also need to support pagination of search hits, but currently we return all
the search hits at once. We will address these requirements one by one.

Implementing Searching of Any Type of Data
Besides indexing Pets, we want to be able to index and search Category
objects. So, we add a test method to TestLuceneIndexer and run it:

public void testIndexNewCategoryObject() throws Exception {

Category category = createCategory();

luceneIndexer.index(category);

IndexReader indexReader = luceneIndexer.openIndexReader();

assertEquals(1,indexReader.numDocs());

Document doc = indexReader.document(0);

assertEquals(“456”,doc.get(“handle”));

assertEquals(“dogs”,doc.get(“name”));

assertEquals(“”,doc.get(“image”));

indexReader.close();

}

private Category createCategory() {

Category category = new Category();

category.setId(456);

category.setName(“dogs”);

return category;

}

Unfortunately, Red Bar!

386 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 386

java.lang.ClassCastException: org.petsoar.categories.Category

at org.petsoar.search.lucene.LuceneIndexer.createDocument

(LuceneIndexer.java:108)

Because we hard-coded the Pet type in createDocument(), it fails. To
solve this problem, we can either add an if/else and support Category class,
too, or refactor it to work with any class. We choose to take the second
approach because we are sure that the popularity of the site will soon force us
to offer other types of searchable information. Also, it gives us more interest-
ing topics to discuss!

It’s a good idea to extract the Document creation logic to a separate class,
because LuceneIndexer is a generic utility class and shouldn’t bother about
domain-model-specific classes. This is clearly the task of a separate entity that
knows about the specifics of each domain class and knows how to satisfy
LuceneIndexer by returning the correct Document for each type.

A possible design is defining an interface named DocumentFactory and let-
ting Pet and Category implement it by creating Document objects out of their
own information. But that’s not a good idea, because with that design our
domain classes are polluted by indexing-related code. In other words, we cross
the boundaries of different layers with that design. A third-party class should
handle it.

As usual, we start with a test case. We will create a LuceneDocumentFactory
interface and a default implementation derived from it: DefaultLuceneDocu-
mentFactory. A createDocument() method is all we need in the Lucene-
DocumentFactory interface. We also create a test data class called
DefaultLuceneDocumentTestData. A Lucene Document object will be created
by DefaultLuceneDocumentFactory for this class. Here is the test case:

[DefaultLuceneDocumentTestData.java]

public class DefaultLuceneDocumentTestData {

}

[TestDefaultLuceneDocumentFactory.java]

public class TestDefaultLuceneDocumentFactory extends TestCase {

private DefaultLuceneDocumentFactory defaultLuceneDocumentFactory;

protected void setUp() throws Exception {

defaultLuceneDocumentFactory =

new DefaultLuceneDocumentFactory();

}

public void testCreateDocument() throws Exception {

DefaultLuceneDocumentTestData obj =

Implementing Browse and Search Capabilities 387

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 387

createDefaultLuceneDocumentTestData();

Document doc = defaultLuceneDocumentFactory.createDocument(obj);

assertNotNull(doc);

}

private DefaultLuceneDocumentTestData

createDefaultLuceneDocumentTestData() {

return new DefaultLuceneDocumentTestData();

}

}

We create a DefaultLuceneDocumentFactory object in the setUp() method
of the unit test. The test testCreateDocument() tests that DefaultLucene-
DocumentFactory creates a Document object for the DefaultLuceneDocu-
mentTestData class. We can’t yet run the test, since we haven’t yet created the
DefaultLuceneDocumentFactory class.

[LuceneDocumentFactory.java]

public interface LuceneDocumentFactory {

Document createDocument(Object obj);

}

[DefaultLuceneDocumentFactory.java]

public class DefaultLuceneDocumentFactory

implements LuceneDocumentFactory {

public Document createDocument(Object obj) {

return new Document();

}

}

LuceneDocumentFactory has a single method, createDocument(). This
method accepts an Object and returns a new Document object. Default-
LuceneDocumentFactory is our default implementation for this interface. For
the time being, we simply create an empty Document object.

We run the test. Green Bar! Moving on to the next step, we must verify that
the created Document object holds correct Fields. To do so, we enhance the
test-data class by introducing some properties. Each property is meant to be
mapped to a separate Field type:

public class DefaultLuceneDocumentTestData {

private long handleAttr;

private int textAttr;

private String keywordAttr;

private double unIndexedAttr;

private float unStoredAttr;

// getter and setter for the above properties goes here

...

}

388 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 388

Here, we have introduced five properties. textAttr, for example, would
be mapped to a Lucene Field.Text object, while keywordAttr would be
mapped to a Field.Keyword, and so forth for the other properties. Each of
these properties is of a different Java type. One is of long type; the other is
String, and so on. This is also to make sure that we test different
mappings. Now we add to the test case and verify that these properties are
correctly mapped to their Lucene counterparts:

public void testCreateDocument() throws Exception {

DefaultLuceneDocumentTestData obj =

createDefaultLuceneDocumentTestData();

Document doc = defaultLuceneDocumentFactory.createDocument(obj);

assertEquals(String.valueOf(obj.getHandleAttr()),

doc.get(“handleField”));

assertEquals(obj.getKeywordAttr(),

doc.get(“keywordField”));

assertEquals(String.valueOf(obj.getTextAttr()),

doc.get(“textField”));

assertEquals(String.valueOf(obj.getUnIndexedAttr()),

doc.get(“unIndexedField”));

assertEquals(String.valueOf(obj.getUnStoredAttr()),

doc.get(“unStoredField”));

}

private DefaultLuceneDocumentTestData

createDefaultLuceneDocumentTestData() {

DefaultLuceneDocumentTestData obj =

new DefaultLuceneDocumentTestData();

obj.setHandleAttr(111);

obj.setKeywordAttr(“112”);

obj.setTextAttr(113);

obj.setUnIndexedAttr(114);

obj.setUnStoredAttr(115);

return obj;

}

We run the test. Red Bar!

expected:<111> but was:<null>

That’s because the Document object does not hold any fields (we are currently
returning an empty Document). We should now write the Document-creation
logic in the createDocument() method of DefaultLuceneDocumentFactory.
But should it know about each and every domain class and create Document
objects for each type by evaluating a long list of if/else blocks for each type? No,
that’s not an attractive solution, because we don’t want to code tricky if/else
blocks for each new type introduced in the future.

Implementing Browse and Search Capabilities 389

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 389

One possible way around this is if we define a way to map the domain
object (Pet or Category) to a Document via XML configuration. For Pet, we
would have a separate Pet.lucene.xml file, and for Category it will be
Category.lucene.xml. No class would hard-code anything to the domain
objects. There should be only a driver that reads the XML file for the domain
type at hand and maps it to a Document. For example, the mapping for the test
data class would look like this:

<configuration>

<field type=”Handle”

fieldName=”handleField” attributeName=”handleAttr”/>

<field type=”Keyword”

fieldName=”keywordField” attributeName=”keywordAttr”/>

<field type=”Text”

fieldName=”textField” attributeName=”textAttr”/>

<field type=”UnIndexed”

fieldName=”unIndexedField” attributeName=”unIndexedAttr”/>

<field type=”UnStored”

fieldName=”unStoredField” attributeName=”unStoredAttr”/>

</configuration>

We define an XML file named DefaultLuceneDocumentTestData
.lucene.xml with the preceding structure. For each property of the class
that a Lucene Field should be created, we define a <field/> element. The
<field/> element specifies the type of the Field, the name of the Lucene
Field, and the name of the attribute that the value is extracted from.

We refactor the createDocumentmethod to the following code. We create an
in-memory representation of the contents of the XML file. ClassConfiguration is
holding that information.

public Document createDocument(Object obj) {

ClassConfiguration class_config = getClassConfiguration(obj);

return createDocumentForObjectFromClassConfiguration(

obj, class_config);

}

private Document createDocumentForObjectFromClassConfiguration(

Object obj, ClassConfiguration class_config) {

return new Document();

}

We call the getClassConfiguration() method to retrieve a ClassCon-
figuration instance for the object we are going to create a Document for. Then
we pass that ClassConfiguration object to a utility method called create
DocumentForObjectFromClassConfiguration(), which is responsible
for using the ClassConfiguration and creating the Document object for the
object at hand. ClassConfiguration looks like this:

390 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 390

public static final class ClassConfiguration {

private List fieldConfigurations = new ArrayList();

public void addFieldConfiguration(

FieldConfiguration fieldConfiguration) {

fieldConfigurations.add(fieldConfiguration);

}

public List getFieldConfigurations() {

return fieldConfigurations;

}

}

public static final class FieldConfiguration {

public static final String TYPE_TEXT = “Text”;

public static final String TYPE_KEYWORD = “Keyword”;

public static final String TYPE_UNINDEXED = “UnIndexed”;

public static final String TYPE_UNSTORED = “UnStored”;

public static final String TYPE_HANDLE = “Handle”;

private String type;

private String fieldName;

private String attributeName;

// getter and setter methods for the above properties

...

}

ClassConfiguration contains a list of FieldConfiguration objects.
The createDocumentForObjectFromClassConfiguration() method

uses the Digester framework from Jakarta to create a ClassConfiguration object
with the data retrieved from the XML file.

private ClassConfiguration getClassConfiguration(Object obj) {

String className = obj.getClass().getName();

String configFileName = className.replace(‘.’,’/’)+”.lucene.xml”;

ClassConfiguration newClassConfig = new ClassConfiguration();

// create the Digester object and add the necessary rules to it

Digester digester = new Digester();

digester.push(newClassConfig);

digester.addObjectCreate(“configuration/field”,

FieldConfiguration.class.getName());

digester.addSetProperties(“configuration/field”);

digester.addSetNext(“configuration/field”, “addFieldConfiguration”,

FieldConfiguration.class.getName());

// load the xml file

InputStream configXml =

Thread.currentThread().getContextClassLoader()

Implementing Browse and Search Capabilities 391

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 391

.getResourceAsStream(configFileName);

try {

// parse the xml file and fill the new_class_config object

digester.parse(new InputStreamReader(configXml));

return newClassConfig;

} catch (Exception e) {

throw new LuceneException(

“Couldn’t load lucene config file successfully, file=”+

config_file_name,e);

}

}

What is happening here? First, we create an empty ClassConfiguration
object and fill it with the XML file contents. Digester is responsible for this
task. Chapter 11 covers Digester in great detail.

We can later refactor the getClassConfiguration() method and cache
the ClassConfiguration objects.

Now that we have the XML file data loaded into the ClassConfiguration
object, we can use that information to create a complete Document object. So, we
enhance the createDocumentForObjectFromClassConfiguration()
method:

private Document createDocumentForObjectFromClassConfiguration(

Object obj, ClassConfiguration classConfig) {

Iterator iter = classConfig.getFieldConfigurations().iterator();

Document doc = new Document();

// for each FieldConfiguration

while (iter.hasNext()) {

FieldConfiguration fieldConfiguration =

(FieldConfiguration)iter.next();

String strContent = getStringContentOfAttribute(obj,

fieldConfiguration.getAttributeName());

Field field = null;

if (fieldConfiguration.getType().equals(

FieldConfiguration.TYPE_TEXT)) {

field = Field.Text(

fieldConfiguration.getFieldName(), strContent);

} else if (fieldConfiguration.getType().equals(

FieldConfiguration.TYPE_KEYWORD)) {

field = Field.Keyword(

fieldConfiguration.getFieldName(), strContent);

} else if (fieldConfiguration.getType().equals(

FieldConfiguration.TYPE_UNINDEXED)) {

field = Field.UnIndexed(

392 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 392

fieldConfiguration.getFieldName(), strContent);

} else if (fieldConfiguration.getType().equals(

FieldConfiguration.TYPE_UNSTORED)) {

field = Field.UnStored(

fieldConfiguration.getFieldName(), strContent);

} else if (fieldConfiguration.getType().equals(

FieldConfiguration.TYPE_HANDLE)) {

field = Field.Keyword(

fieldConfiguration.getFieldName(), strContent);

} else {

throw new LuceneException(

“Unknown type for a field, fieldName=”+

fieldConfiguration.getFieldName());

}

doc.add(field);

}

return doc;

}

What we are doing is looping over every FieldConfiguration object based on
the type creating the correct Field object. For example, we create a Field.Text
object for a FieldConfiguration with the type of TYPE_TEXT. The String con-
tent of the field is extracted from the object by calling a little utility method
called getStringContentOfAttribute(). This method is implemented
like this:

String getStringContentOfAttribute(Object obj,String attributeName) {

try {

String str = BeanUtils.getProperty(obj,attributeName);

return (str==null) ? “” : str;

} catch (Exception e) {

throw new LuceneException(

“Couldn’t get string content of attribute, attributeName=”+

attributeName);

}

}

Using Jakarta Commons BeanUtils, we can retrieve the String representa-
tion of the attribute. Without BeanUtils, we would have to write lots of ugly
if/else blocks to deal with different Java types, as well as complicated Java
reflection code.

It’s now time to go back to our good-old test case and run it again with the
new logic. Recall the test case:

Implementing Browse and Search Capabilities 393

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 393

public void testCreateDocument() throws Exception {

DefaultLuceneDocumentTestData obj =

createDefaultLuceneDocumentTestData();

Document doc = defaultLuceneDocumentFactory.createDocument(obj);

assertEquals(String.valueOf(obj.getHandleAttr()),

doc.get(“handleField”));

assertEquals(obj.getKeywordAttr(),

doc.get(“keywordField”));

assertEquals(String.valueOf(obj.getTextAttr()),

doc.get(“textField”));

assertEquals(String.value(obj.getUnIndexedAttr()),

doc.get(“unIndexedField”));

assertEquals(String.valueOf(obj.getUnStoredAttr()),

doc.get(“unStoredField”));

}

Previously, it failed because the Document was empty, but now we have filled
the Document object using an XML-based mapping file. Running the test now
results in a Green Bar. The only thing left undone is refactoring LuceneIndexer
to work with the LuceneDocumentFactory:

[LuceneIndexer.java]

public class LuceneIndexer {

...

private LuceneDocumentFactory luceneDocumentFactory;

public synchronized void index(Object obj) {

unIndex(obj);

try {

Analyzer analyzer = createAnalyzer();

IndexWriter writer = indexStore.createWriter(analyzer);

try {

Document doc =

luceneDocumentFactory.createDocument(obj);

writer.addDocument(doc);

writer.optimize();

} finally {

writer.close();

}

} catch (IOException e) {

throw new LuceneException(“Cannot update index”, e);

}

}

...

}

394 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 394

To make sure we didn’t break LuceneIndexer, we run the TestLuceneIndexer
test case. Red Bar! A NullPointerException shows up because lucene
DocumentFactory is null. The caller of LuceneIndexer should specify which
LuceneDocumentFactory class should be used. We now refactor the setUp()
method of the test case.

protected void setUp() throws Exception {

File tmpDir = new File(System.getProperty(“java.io.tmpdir”));

indexDir = new File(tmpDir, “test-index”);

indexDir.mkdir();

luceneDocumentFactory = new DefaultLuceneDocumentFactory();

indexStore = new LuceneIndexStore(indexDir.getAbsolutePath());

luceneIndexer = new LuceneIndexer();

luceneIndexer.setIndexStore(indexStore);

luceneIndexer.setLuceneDocumentFactory(luceneDocumentFactory);

luceneSearcher = new LuceneSearcher();

luceneSearcher.setIndexStore(indexStore);

luceneSearcher.setLuceneDocumentFactory(luceneDocumentFactory);

}

We run the test again and Green Bar!

Where We Are
We’ve refactored LuceneIndexer to delegate the Document-creation logic to an
external LuceneDocumentFactory. We created a default implementation for it.
The DefaultLuceneDocumentFactory reads an XML file to learn about the
object-to-Lucene-Document mapping and creates a new Document object
using this mapping.

We have now solved the problem of indexing different domain objects. We
can make Pet be indexed by creating the Pet.lucene.xml file. We can make
Category be indexed by creating the Category.lucene.xml file. Likewise,
we can index any other data type in the future using the same technique.

Implementing Full-Text Searches
The most important component in implementing a smart and user-friendly
full- text search capability is the analyzer. Using an inappropriate analyzer
might make searches awkward and disappoint users by returning unexpected
or even empty search results. Previously, we used the most bare-bones Ana-
lyzer class only for the sake of simplicity. It is time to review the analyzer we
chose and replace it with an appropriate analyzer based on the searching
requirements of our application.

Implementing Browse and Search Capabilities 395

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 395

Recall that LuceneIndexer and LuceneSearcher both had a create
Analyzer() method defined:

private Analyzer createAnalyzer() {

return new StandardAnalyzer();

}

We should remove the duplication and make them both use a single imple-
mentation. We can move this method to the LuceneDocumentFactory interface
and provide a default implementation in DefaultLuceneDocumentFactory.
Refactoring LuceneIndexer and LucenceSearcher:

private Analyzer createAnalyzer() {

return luceneDocumentFactory.createAnalyzer();

}

Now we define the createAnalyzer() method in LuceneDocument-
Factory and implement it in DefaultLuceneDocumentFactory by creating an
Analyzer class more in line with our application requirements.

[LuceneDocumentFactory.java]

public interface LuceneDocumentFactory {

Document createDocument(Object obj);

Analyzer createAnalyzer();

}

[DefaultLuceneDocumentFactory.java]

public class DefaultLuceneDocumentFactory

implements LuceneDocumentFactory {

...

public Analyzer createAnalyzer() {

return new DefaultAnalyzer();

}

public static class DefaultAnalyzer extends Analyzer {

public TokenStream tokenStream(String fieldName,

Reader reader) {

LetterTokenizer tokenizer = new LetterTokenizer(reader);

TokenStream result = null;

result = new LowerCaseFilter(tokenizer);

result = new StopFilter(result,

StopAnalyzer.ENGLISH_STOP_WORDS);

result = new PorterStemFilter(result);

return result;

}

}

}

396 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 396

We’ve defined a new class, DefaultAnalyzer, that extends Lucene’s
Analyzer abstract base class and implements its tokenStream() method by
creating a TokenStream class composed of a few TokenFilters. TokenStream
is responsible for tokenizing a String, such as a query or field of a
Document. TokenStream is internally used by Lucene’s engine to enumerate
over every token in a String; so whenever we index something, the fields of the
document are tokenized. Later when we query the documents, the query is
also tokenized, and both tokenized forms are compared to each other. In
essence, the outcome of the query is determined by the TokenStream used.

A TokenFilter is a TokenStream whose input is another TokenStream. First,
we divide the String into letters by using LetterTokenizer; then each letter
(which is now a token) is converted to lowercase form by the nested Lower-
CaseFilter; then common English stop words are removed from the list of
tokens, and finally the Porter algorithm is applied over the tokens.

By using this sequence of TokenFilters, we make sure all common queries
we expect are answered correctly. We make sure the query is not case-sensitive
and that searching for “puppy” and “puppies” returns the same results (this is
the Porter algorithm at work). We would create a different analyzer if we were
to support different languages. Different languages have different stop words
and different rules for recognizing separate letters. Fortunately, our site is not
yet internationalized, so what we’ve done so far satisfies our current needs.

Implementing Pagination
Pagination makes it possible for users to view lists because search results are
displayed in smaller chunks (ten items per each page, for example). This
makes navigating between these pages easy. Both StoreFrontListPets and
StoreFrontSearch should support pagination. We chose to work with domain
objects in both of these actions, meaning they both return a List of Pet objects.
A common code can be written to page through the List of Pets originated
from both browse and search operations. So, if 200 Pets are to be displayed for
browsing and we show 20 Pets per page, accessing items 0 to 19 of this List
gives us all the Pets that we display in page 1.

You might realize that, with this strategy, we first load 200 Pets from the
database and then just iterate over the first 20 of them. There is a huge over-
head here because, although we show only 20 Pets to the user, we load 200! To
overcome this overhead we should simply load only the Pets that we want to
show now and postpone loading the rest of the Pets to when the user navigates
to the pages containing those Pets.

Look at the StoreFrontListPets action. It works with PetStore, which in turn
delegates the actual database access operation to a PersistenceManager
instance. HibernatePersistenceManager is the implementation we’re using.

Implementing Browse and Search Capabilities 397

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 397

Thanks to Hibernate’s proxy facility, we can easily tell Hibernate to load only
the Pets that are actually needed for display. All we have to do is to add a
proxy parameter to Pet’s @hibernate.class XDoclet tag:

/**

* A creature.

* @hibernate.class table=”PETS” proxy=”org.petsoar.pets.Pet”

*/

public class Pet {

...

}

What this parameter does is to tell Hibernate to lazy-load Pet objects. When-
ever we do a call to Session.load() or Session.find(), Hibernate just
creates an empty proxy object instead of a fully loaded Pet. As soon as one of
the property methods (such as Pet.getName()) is accessed, it goes to the
database and loads that Pet. The proxy parameter of the @hibernate.class tag
has the name of the proxy class in it; in this case, we used the same Pet class,
which means an empty Pet object is created and treated as a proxy for a real Pet
object.

By adding this single doclet parameter to Pet, we instruct Hibernate to lazily
load all Pets. It solves our problem of loading 200 Pets at once when we only
need to show 20 per page.

But what about the StoreFrontSearch action? A query can return a large num-
ber of Pets as well. Recall that earlier in this chapter we coded LuceneSearcher
to return only the IDs (Long) of found Pets, not the Pet objects themselves. To
get the Pet objects from those IDs, we need to ask a PersistenceManager
instance for help. A PersistenceManager implementation, such as Hibernate-
PersistenceManager, can turn those IDs into Pet objects by communicating with
the database. However, it should only access the database or, more specifically,
the PersistenceManager, for those Pets that need to be displayed.

We solve this problem by introducing a LazyLoaderList class. A LazyLoad-
erList derives from java.util.List and contains the IDs of Pets. It loads the
actual Pet object by asking a PersistenceManager object whenever the
get(int index) method is called for an index of the List.

Let’s write some test code to demonstrate this behavior:

[TestLazyLoaderList.java]

public class TestLazyLoaderList extends TestCase {

private Mock mockPersistenceManager;

private List lazyList;

protected void setUp() throws Exception {

398 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 398

mockPersistenceManager = new Mock(PersistenceManager.class);

// add 123 and 456 ids to the List

List idsList = new ArrayList();

idsList.add(new Long(123));

idsList.add(new Long(456));

// create a LazyLoaderList wrapper around idsList

lazyList = new LazyLoaderList(idsList,

(PersistenceManager) mockPersistenceManager.proxy(),

String.class);

}

public void testListContainsCorrectNumberOfElements()

throws Exception {

// assert LazyLoaderList contains two elements

assertEquals(2, lazyList.size());

}

public void testOnlyLoadsItemsWhenNeeded() throws Exception {

// access the first element, it should call

// PersistenceManager’s getById method

mockPersistenceManager.expectAndReturn(“getById”,

C.eq(String.class, new Long(123)), “123”);

assertEquals(“123”, lazyList.get(0));

mockPersistenceManager.verify();

// now access the second element, it should call

// PersistenceManager’s getById method

mockPersistenceManager.reset();

mockPersistenceManager.expectAndReturn(“getById”,

C.eq(String.class, new Long(123)), “123”);

assertEquals(“456”, lazyList.get(1));

mockPersistenceManager.verify();

// now access the first element again, this time it should

// not call PersistenceManager’s getById method, because it has

// already loaded it once by calling getById before

mockPersistenceManager.reset();

mockPersistenceManager.expectAndReturn(“getById”,

C.eq(String.class, new Long(123)), “123”);

assertEquals(“123”, lazyList.get(0));

mockPersistenceManager.verify();

}

}

In this test, we create a LazyLoaderList based upon an ArrayList. That
ArrayList contains two Long objects. Upon calling the get(index) method
on this List, LazyLoaderList asks the PersistenceManager to retrieve an object

Implementing Browse and Search Capabilities 399

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 399

from the database based upon the data type (the class) and the ID of the
domain object.

The implementation of LazyLoaderList is as follows:

public class LazyLoaderList extends ArrayList {

private List decoratedList;

private BitSet loadedListBitSet;

private PersistenceManager persistenceManager;

private Class type;

public LazyLoaderList(List decoratedList,

PersistenceManager persistenceManager,

Class type) {

this.decoratedList = decoratedList;

loadedListBitSet = new BitSet(decoratedList.size());

this.persistenceManager = persistenceManager;

this.type = type;

}

public int size() {

return decoratedList.size();

}

public boolean isEmpty() {

return decoratedList.isEmpty();

}

public Object get(int index) {

if(loadedListBitSet.get(index) == false) {

Long id = (Long) decoratedList.get(index);

Object lazyLoadedObj = persistenceManager.getById(type,

id.longValue());

loadedListBitSet.set(index);

decoratedList.set(index, lazyLoadedObj);

}

return decoratedList.get(index);

}

}

LazyLoaderList is backed by a java.util.BitSet, which is simply a long list of
bits. So, whenever get(index) is called, we check whether the bit in the
specified index is set or not. If it’s not set, PersistenceManager is asked to load
the domain object for us. Otherwise, it’s already loaded, and we just return the
object in that index.

400 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 400

With this simple class, we can very cleanly handle pagination and lazy load-
ing of Pets in the Search action. We just decorate the List of IDs that Searcher
returned us with a LazyLoaderList and presto, the search result is lazy loaded!

Here is how Search uses this new class:

[Search.java]

private PersistenceManager persistenceManager;

public void setPersistenceManager(PersistenceManager pm) {

this.persistenceManager = pm;

}

public String execute() throws Exception {

searcher.setQuery(query);

setPets(searcher.search());

return SUCCESS;

}

public void setPets(List items) {

decorateWithLazyLoaderList(items);

}

protected void decorateWithLazyLoaderList(List items) {

this.items = Collections.unmodifiableList(

new LazyLoaderList(items, persistenceManager, Pet.class));

}

The Search.execute() method calls setpets(), and it decorates the List of
IDs that Searcher returned with a LazyLoaderList. The PersistenceManager is
also passed to it. With this mechanism, we get pagination for free. Neither
PersistenceManager nor Searcher has to deal with pagination code directly.
And both browse-and-search features use high-level domain objects while still
being efficient.

Tying It All Together

Let’s wrap up this chapter by creating a GUI for browsing Pets and searching
them. We create a listpets.jsp file. This view shows either all Pets in stock
or the result of a search operation. As we’ve seen before, because both browse
and search produce a list of Pets as their output, we can just write a single JSP
file and use it for both of them. Here is how listpets.jsp is defined:

Implementing Browse and Search Capabilities 401

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 401

[listpets.jsp]

<%@ taglib uri=”webwork” prefix=”ww” %>

<%@ taglib uri=”webwork” prefix=”ui” %>

<html>

<body>

<form action=”search.action” method=”get”>

<table class=”form”>

<ui:textfield label=”Search” name=”query”/>

</table>

</form>

<ww:iterator value=”pets”>

<table class=”form” width=”100%”>

<tr>

<th>

<ww:property value=”name”/>

</th>

</tr>

<tr>

<td>

Gender: <ww:property value=”gender”/>

<ww:property value=”description”/>

</td>

</tr>

</table>

</ww:iterator>

</body>

</html>

It’s a very simple WebWork JSP view: an HTML form at the top of the page
for performing a search, then a ww:iterator tag to iterate over all Pets pro-
duced by the action object redirecting to this page. The action class is either
StoreFrontListPets or Search, as defined in the xwork.xml configuration file:

[xwork.xml]

<xwork>

...

<package name=”storefront” extends=”default”

namespace=”storefront/”>

<action name=”listpets”

class=”org.petsoar.actions.storefront.ListPets”>

<interceptor-ref name=”defaultStack”/>

<result name=”success”>

<param name=”location”>listpets.jsp</param>

402 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 402

</result>

</action>

<action name=”search”

class=”org.petsoar.actions.storefront.Search”>

<interceptor-ref name=”defaultStack”/>

<result name=”success”>

<param name=”location”>listpets.jsp</param>

</result>

</action>

</package>

</xwork>

Note that both search and listpets are configured to redirect to listpets
.jsp after successfully doing their job of producing a list of Pets.

Supporting pagination is as easy as changing the iterator tag to this:

[listpets.jsp]

<ww:iterator value=”pets.subList(@startIndex,@endIndex)”>

...

</ww:iterator>

Because the Pets object is a java.util.List, we can easily call its subList()
method and a get a List containing only the elements of the original Pets List
that is in indices startIndex and endIndex. So, if startIndex is 0 and
endIndex is 19, we iterate over the first 20 Pets of the original List. Both
startIndex and endIndex are request parameters passed as part of the
URL for this action.

Summary

In this chapter, we first implemented a ListCategories WebWork action class
that deals with browsing the list of categories of Pets offered in the site. As
usual, a test case was written for it.

Then we implemented a ListPets action class to deal with browsing the list
of all the offered Pets. A change to this class made it possible to retrieve and
browse only Pets of a specific Category.

After implementing browsing of categories and Pets, we moved to imple-
menting the search facility. A Search WebWork action was written. But, instead
of putting the searching logic in this UI-level class, we delegated the responsi-
bility to a specialized Searcher interface. We created a concrete implementation
for it called LuceneSearcher that uses Lucene API to perform the actual

Implementing Browse and Search Capabilities 403

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 403

full-text search operation. To do searches, information should be available in
indexed format in some index files. So, we introduced a LuceneIndexer
class. LuceneIndexer creates a Lucene Document object for each searchable
domain object. To support creating Document objects for different types
of domain classes (such as Pet and Category) and to make the Document cre-
ation code cleaner, we introduced a separate interface for this task called
LuceneDocumentFactory and a default implementation for it called Default-
LuceneDocumentFactory that stores information needed for mapping domain
objects to Document objects in XML files.

By this stage, we had a working indexing and searching system. To support
more sophisticated and smarter full-text searching, we replaced the simple
Lucene analyzer type we used before with a new one capable of handling case-
sensitive and other language-specific issues.

Both browse and search need pagination support. We introduced pagina-
tion to ListPets by using Hibernate’s proxy feature. Search, on the other hand,
used a decorator List to lazily load found Pets. From a client’s perspective,
both search and browse work with a List of domain objects and a single code
can be written to page through them.

Finally, we created some JSP files that hook to the WebWork actions we
developed before and displayed the result to end users.

404 Chapter 18

22 463620 Ch18.qxd 10/28/03 8:50 AM Page 404

405

In this chapter, we will implement the business logic and user interface for cre-
ating a shopping cart. A user should be able to add Pets to the shopping cart,
view the contents of the shopping cart, and finally perform a checkout. Upon
checking out, an Order should be created from the shopping cart containing
the list of purchased Pets.

Creating a Shopping Cart

A shopping cart is nothing but a list of products to be purchased. The user
should be able to add Pets to the shopping cart, remove any of the Pets from it,
and view its contents.

We start implementing the shopping cart at the domain-model level. We
first create the domain object representing the shopping cart in our application
and provide the methods for adding Pets to it, removing Pets from it, and get-
ting the list of the Pets already added to the cart.

We create a TestShoppingCart class and write some code for the three oper-
ations that the ShoppingCart should support:

package org.petsoar.cart;

import org.petsoar.pets.Pet;

import junit.framework.TestCase;

Adding a Shopping Cart

C H A P T E R

19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 405

public class TestShoppingCart extends TestCase {

public void testAddAndRemovePet() {

Pet pet = new Pet();

pet.setId(1);

pet.setName(“Bill”);

pet.setDescription(“Bill is a cat”);

pet.setGender(Pet.MALE);

pet.setPersonality(“timid”);

ShoppingCart cart = new ShoppingCart();

assertTrue(cart.isEmpty());

assertEquals(0,cart.getPets().size());

cart.addPet(pet);

assertFalse(cart.isEmpty());

assertEquals(1,cart.size());

assertEquals(1,cart.getPets().size());

assertEquals(pet,cart.getPets().get(0));

cart.removePet(pet);

assertTrue(cart.isEmpty());

assertEquals(0,cart.size());

assertEquals(0,cart.getPets().size());

}

}

The test method is self-explanatory and very simple. Initially, it checks to see
if the cart is empty; then a Pet is added and verified that it has been added
successfully. Finally, the Pet is removed and verified that it’s been removed
successfully.

Next, we should define the ShoppingCart class to satisfy the assertions of
the test method. ShoppingCart can simply have a List of Pets, or we can use
more sophisticated approaches such as saving ShoppingCart in a database or
just putting the ShoppingCart of a user to the HTTP session of that user. To
keep the options open and to separate the interface from the implementation,
we make ShoppingCart an interface and create concrete implementations for it
based on the current requirements of the site. Another good side effect of mak-
ing ShoppingCart an interface is that we can use mock objects in our tests.

We use a simple strategy for now: no long-term persistence in a database.
We simply add Pets to a List and attach the ShoppingCart object to the HTTP
session of the user. We create a class named SimpleShoppingCart and modify
the test method to create an instance of this type.

public void testAddAndRemovePet() {

Pet pet = new Pet();

pet.setId(1);

pet.setName(“Bill”);

406 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 406

pet.setDescription(“Bill is a cat”);

pet.setGender(Pet.MALE);

pet.setPersonality(“timid”);

ShoppingCart cart = new SimpleShoppingCart();

...

}

The ShoppingCart interface is defined as follows:

package org.petsoar.cart;

import org.petsoar.pets.Pet;

import java.util.List;

public interface ShoppingCart {

public boolean addPet(Pet pet);

public boolean removePet(Pet pet);

public boolean isEmpty();

public int size();

public List getPets();

}

All the common operations we’d expect from a typical ShoppingCart are
defined here.

The SimpleShoppingCart concrete class provides a very simple implemen-
tation of this interface. It keeps track of the Pets added to the cart by a
java.util.List property. It’s not persistable. It doesn’t have any @hibernate tags.

package org.petsoar.cart;

import org.petsoar.pets.Pet;

import java.util.ArrayList;

import java.util.List;

public class SimpleShoppingCart implements ShoppingCart {

private List pets = new ArrayList();

public boolean addPet(Pet pet) {

return pets.add(pet);

}

public boolean removePet(Pet pet) {

return pets.remove(pet);

}

public boolean isEmpty() {

return pets.isEmpty();

Adding a Shopping Cart 407

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 407

}

public int size() {

return pets.size();

}

public List getPets() {

return Collections.unmodifiableList(pets);

}

}

It is necessary to alter the test to instantiate the SimpleShoppingCart imple-
mentation.

We fast forwarded here a little bit and skipped the TDD cycle we learned in
previous chapters to talk about the more interesting techniques used in the
remainder of this chapter.

Creating the WebWork Actions

Now that the ShoppingCart interface is defined and a concrete implementa-
tion of it is also created, we can move on to defining the WebWork action
classes for adding and removing Pets to and from a ShoppingCart.

We start by creating the AddPetToShoppingCart action class, as usual by
defining the test case first. AddPetToShoppingCart accepts a petId, which it
then uses to retrieve the Pet object with that ID from PetStore; then it adds that
Pet to the ShoppingCart.

package org.petsoar.actions.cart;

import com.opensymphony.xwork.Action;

import com.mockobjects.dynamic.Mock;

import org.petsoar.cart.ShoppingCart;

import org.petsoar.pets.PetStore;

import org.petsoar.pets.Pet;

public class TestAddPetToShoppingCart extends TestCase

{

private AddPetToShoppingCart action;

private Mock mockPetStore;

private Mock mockShoppingCart;

private Pet pet;

protected void setUp() throws Exception {

mockShoppingCart = new Mock(ShoppingCart.class);

mockPetStore = new Mock(PetStore.class);

action = new AddPetToShoppingCart();

408 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 408

action.setPetStore((PetStore)mockPetStore.proxy());

pet = new Pet();

pet.setId(123);

}

public void testAddPet() throws Exception {

action.setShoppingCart((ShoppingCart) mockShoppingCart.proxy());

mockPetStore.matchAndReturn(“getPet”, new Long(123), pet);

mockShoppingCart.expect(“addPet”, pet);

action.setPetId(123);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

mockPetStore.verify();

mockShoppingCart.verify();

}

}

We use mock objects instead of concrete implementations of PetStore and
ShoppingCart. After all, we want to verify that the correct methods of those
interfaces are called for in all the cases that AddPetToShoppingCart should be
able to respond to.

The implementation for the AddPetToShoppingCart action is as follows:

package org.petsoar.actions.cart;

import org.petsoar.pets.Pet;

import org.petsoar.pets.PetStore;

import org.petsoar.pets.PetStoreAware;

import org.petsoar.cart.ShoppingCart;

import junit.framework.TestCase;

import com.mockobjects.dynamic.Mock;

public class AddPetToShoppingCart implements Action,

ShoppingCartAware, PetStoreAware {

private long petId;

private PetStore petStore;

protected ShoppingCart shoppingCart;

public void setShoppingCart(ShoppingCart shoppingCart) {

this.shoppingCart = shoppingCart;

}

public void setPetStore(PetStore petStore) {

this.petStore = petStore;

}

public void setPetId(long petId) {

Adding a Shopping Cart 409

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 409

this.petId = petId;

}

public String execute() throws Exception {

if (shoppingCart == null || petId == 0) {

return ERROR;

}

Pet pet = petStore.getPet(petId);

if (pet == null)

return ERROR;

shoppingCart.addPet(pet);

return SUCCESS;

}

}

By implementing the ShoppingCartAware and PetStoreAware interfaces,
we use the IoC framework of WebWork to pass ShoppingCart and PetStore
objects to the action. The concrete type of these interfaces and the scope of
them are defined in the components.xml file, as shown here:

<component>

<scope>request</scope>

<class>org.petsoar.pets.DefaultPetStore</class>

<enabler>org.petsoar.pets.PetStoreAware</enabler>

</component>

<component>

<scope>session</scope>

<class>org.petsoar.cart.SimpleShoppingCart</class>

<enabler>org.petsoar.cart.SimpleShoppingAware</enabler>

</component>

By using the IoC support of WebWork, we can easily request WebWork to
create a SimpleShoppingCart object when the HTTP session for a user is cre-
ated. In other words, an empty SimpleShoppingCart is created and attached to
the session object when the user starts browsing the site. When the user clicks
a link to add a Pet to the shopping cart, the selected Pet is retrieved from
PetStore and added to the ShoppingCart instance.

As you can see, thanks to the IoC capabilities of WebWork, we don’t have to
pollute the execute() method of the action with logic for creating a specific
ShoppingCart and adding it to the underlying HTTP session. WebWork under
the covers does that. AddPetToShoppingCart contains only high-level
business logic for dealing with the job it’s supposed to do: adding a pet to the
shopping cart of the user.

410 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 410

Checking Out the Shopping Cart

The process of checking out is quite straightforward. When the Check Out but-
ton is clicked, the contents of the shopping cart are listed for the user, as well
as billing and shipping information that should be filled out by the user. Then,
when all the information is entered, the order is submitted when the user
clicks the Save Order button.

To fulfill this scenario, we need two actions: an action that performs the
checkout and shows the order information page as the result and another
action that saves the order.

We call the first action CheckOut. It simply creates an Order object contain-
ing the ShoppingCart of the user and fills some other information from the
User object. The Order object is then used in the vieworder.jsp page to
show the contents of the order to the user.

So we start by defining TestCheckOut.

package org.petsoar.order;

import com.opensymphony.xwork.Action;

import org.petsoar.actions.cart.AbstractShoppingCartTest;

import org.petsoar.actions.order.CheckOut;

import org.petsoar.cart.ShoppingCart;

public class TestCheckOut extends AbstractShoppingCartTest {

private CheckOut action;

protected void setUp() throws Exception {

super.setUp();

action = new CheckOut();

}

public void testCheckOut() throws Exception {

action.setShoppingCart((ShoppingCart)mockShoppingCart.proxy());

String result = action.execute();

assertEquals(Action.SUCCESS, result);

assertEquals(mockShoppingCart,

action.getOrder().getShoppingCart());

}

public void testCheckOutNoShoppingCart() throws Exception {

action.setShoppingCart(null);

String result = action.execute();

assertEquals(Action.ERROR, result);

}

}

Adding a Shopping Cart 411

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 411

The testCheckOut() method creates a mock ShoppingCart object. After
executing the CheckOut action, the mock ShoppingCart instance should be set
in the Order object created as a result of running CheckOut. As you can see,
TestCheckOut derives from AbstractShoppingCartTest. AbstractShopping-
CartTest is introduced to remove the duplicated code from TestCheckOut and
TestAddPetToShoppingCart classes because both need to deal with a Shop-
pingCart. AbstractShoppingCartTest is defined like this:

package org.petsoar.actions.cart;

import junit.framework.TestCase;

import com.mockobjects.dynamic.Mock;

import org.petsoar.cart.ShoppingCart;

public abstract class AbstractShoppingCartTest extends TestCase {

protected Mock mockShoppingCart;

protected void setUp() throws Exception {

mockShoppingCart = new Mock(ShoppingCart.class);

}

}

Finally, let’s see what the CheckOut class looks like.

package org.petsoar.actions.order;

import org.petsoar.cart.ShoppingCart;

import org.petsoar.actions.cart.AbstractShoppingCartAction;

import org.petsoar.order.Order;

public class CheckOut extends AbstractShoppingCartAction {

private Order order = new Order();

public ShoppingCart getShoppingCart() {

return shoppingCart;

}

public Order getOrder() {

return order;

}

public String execute() throws Exception {

if(shoppingCart == null) {

return ERROR;

}

else {

412 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 412

order.setShoppingCart(shoppingCart);

//todo: fill some of the order info from the User object

return SUCCESS;

}

}

}

It simply creates an Order object and fills it with the ShoppingCart and User
information. Again, we removed some code duplication from AddPetTo-
ShoppingCart and CheckOut classes and introduced an abstract class for
action classes dealing with ShoppingCart:

package org.petsoar.actions.cart;

import com.opensymphony.xwork.Action;

import org.petsoar.cart.ShoppingCartAware;

import org.petsoar.cart.ShoppingCart;

public abstract class AbstractShoppingCartAction

implements Action, ShoppingCartAware {

protected ShoppingCart shoppingCart;

public void setShoppingCart(ShoppingCart shoppingCart) {

this.shoppingCart = shoppingCart;

}

}

Now the only incomplete part of this story is the Order object itself. Order
has a ShoppingCart property, as well as shipping, billing, and credit-card
information that are later entered by user when the order is saved. Order can
become quite a heavy and polluted class because of these various types of
information. It’s a good idea to hold shipping, billing, and credit-card infor-
mation in separate classes for more clarity. Thus, Order has references to the
ShipmentInfo, BillingInfo, and CreditCardInfo classes. These classes contain
only relevant information to their scope.

Order also needs a status field. Valid statuses are Pending and Shipped.
Total price is another field of Order. It’s the sum of all the prices of Pets added
to the order.

Order needs long-term persistence. It should be stored in the database for
later reference and order tracking. So, the Order class and the dependent Ship-
mentInfo, BillingInfo, and CreditCardInfo classes should be annotated with
XDoclet tags to make Order persistable.

Adding a Shopping Cart 413

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 413

Order is defined like this:

package org.petsoar.order;

import org.petsoar.cart.ShoppingCart;

import java.math.BigDecimal;

public class Order {

public static final String ORDER_STATUS_PENDING = “Pending”;

public static final String ORDER_STATUS_SHIPPED = “Shipped”;

private long id;

private ShipmentInfo shipmentInfo = new ShipmentInfo();

private BillingInfo billingInfo = new BillingInfo();

private CreditCardInfo creditCardInfo = new CreditCardInfo();

private ShoppingCart shoppingCart;

private BigDecimal totalPrice;

private String status = ORDER_STATUS_PENDING;

/**

* @hibernate.id column=”ORDERID” generator-class=”increment”

*/

public long getId() {

return id;

}

public void setId(long id) {

this.id=id;

}

/**

* @hibernate.component

*/

public ShipmentInfo getShipmentInfo() {

return shipmentInfo;

}

public void setShipmentInfo(ShipmentInfo shipmentInfo) {

this.shipmentInfo = shipmentInfo;

}

/**

* @hibernate.component

*/

public BillingInfo getBillingInfo() {

return billingInfo;

}

public void setBillingInfo(BillingInfo billingInfo) {

this.billingInfo = billingInfo;

}

/**

414 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 414

* @hibernate.component

*/

public CreditCardInfo getCreditCardInfo() {

return creditCardInfo;

}

public void setCreditCardInfo(CreditCardInfo creditCardInfo) {

this.creditCardInfo = creditCardInfo;

}

/**

* @hibernate.component

*/

public ShoppingCart getShoppingCart() {

return shoppingCart;

}

public void setShoppingCart(ShoppingCart shoppingCart) {

this.shoppingCart = shoppingCart;

}

/**

* The total price.

* @hibernate.property column=”PRICE”

*/

public BigDecimal getTotalPrice() {

return totalPrice;

}

public void setTotalPrice(BigDecimal totalPrice) {

this.totalPrice = totalPrice;

}

/**

* The status of the Order.

* @hibernate.property column=”STATUS”

*/

public String getStatus() {

return status;

}

public void setStatus(String status) {

if (status.equals(ORDER_STATUS_PENDING) ||

status.equals(ORDER_STATUS_SHIPPED)) {

this.status = status;

} else {

throw new IllegalArgumentException(“Invalid orderStatus”);

}

}

}

The implementation is incredibly simple and self-explanatory. The only part
worthy of explanation is the use of the @hibernate.component XDoclet tag that

Adding a Shopping Cart 415

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 415

is defined for the getter methods of the dependent objects (for example, the
getter for CreditCardInfo):

/**

* @hibernate.component

*/

public CreditCardInfo getCreditCardInfo() {

return creditCardInfo;

}

According to Hibernate’s vocabulary, a component is an object dependent on
its parent object and cannot live without its parent, nor does it have a primary
key. CreditCardInfo is such a class. It cannot live without the surrounding
Order object. It does not need a primary key because, after all, no one would
need to look it up independently of its Order using a primary key. We apply
the @hibernate.component tag to tell Hibernate that CreditCardInfo is a com-
ponent of Order and should be persisted in the same table in which Order is
persisted. CreditCardInfo is a separate class and has properties of its own, but
those properties are stored in the Orders table. Therefore, CreditCardInfo is
coded like this:

package org.petsoar.order;

import java.util.Date;

public class CreditCardInfo {

public static final String VISA = “Visa”;

public static final String MASTER_CARD = “Master Card”;

public static final String AMEX = “American Express”;

public static final String UNKNOWN = “Unknown”;

private String creditCardNumber;

private Date expirationDate;

private String cardType;

/**

* @hibernate.property column=”CCNUM” length=”20”

*/

public String getCreditCardNumber() {

return creditCardNumber;

}

public void setCreditCardNumber(String creditCardNumber) {

this.creditCardNumber = creditCardNumber;

}

/**

* @hibernate.property column=”CCEXPIREDATE”

*/

public Date getExpirationDate() {

416 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 416

return expirationDate;

}

public void setExpirationDate(Date expirationDate) {

this.expirationDate = expirationDate;

}

/**

* @hibernate.property column=”CCTYPE”

*/

public String getCardType() {

return cardType;

}

public void setCardType(String cardType) {

if (cardType == null) {

cardType = UNKNOWN;

}

if (cardType.equals(VISA) ||

cardType.equals(MASTER_CARD) ||

cardType.equals(AMEX) ||

cardType.equals(UNKNOWN)) {

this.cardType = cardType;

} else {

throw new IllegalArgumentException(“Invalid cardType”);

}

}

}

Note that CreditCardInfo doesn’t have a @hibernate.class tag, but the prop-
erties are marked with a @hibernate.property tag like the properties of the
Order class. Because these properties are all part of a single Orders table in the
database, they are all loaded by a single SELECT statement and inserted into
the database by a single INSERT statement. The same persistence strategy is
used for the ShippingInfo and BillingInfo classes.

Now we just need to add CheckOut to the xwork.xml file:

<package name=”order” extends=”default” namespace=”order/”>

<action name=”checkout” class=”org.petsoar.actions.order.CheckOut”>

<interceptor-ref name=”defaultStack”/>

<result name=”success”>

<param name=”location”>vieworder.jsp</param>

</result>

<result name=”error”>

<param name=”location”>/errors/notfound.jsp</param>

</result>

</action>

</package>

Adding a Shopping Cart 417

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 417

When an Order object is successfully created by the CheckOut action, the
vieworder.jsp page is shown to the user. The vieworder.jsp view is a
typical order-entry page. All the Pets added to the ShoppingCart are shown,
and a big form is displayed where billing, shipping, and credit-card informa-
tion is entered by the user. Here is the JSP code for this page:

<%@ taglib uri=”webwork” prefix=”webwork” %>

<html>

<head>

<title>Details for Order</title>

</head>

<body>

<webwork:property value=”order”>

<table cellspacing=”0” class=”grid”>

<tr>

<th width=”200”>Type</th>

<th width=”200”>Name</th>

<th>Price</th>

</tr>

<webwork:iterator value=”shippingInfo/pets”>

<tr>

<td>

<a href=”viewpet.action?id=<ww:property value=”id”/>”>

<webwork:property value=”type”/>

</td>

<td><webwork:property value=”name”/></td>

<td><webwork:property value=”price”/></td>

</tr>

</webwork:iterator>

</table>

<p>Total price: <webwork:property value=”totalPrice”/></p>

<p>Status: <webwork:property value=”status”/></p>

<form action=”saveorder.action” method=”post”>

<p>Shipping Information</p>

<table cellspacing=”0” class=”grid”>

<webwork:property value=”order”>

<webwork:textfield label=”First Name” name=”shipToFirstName”/>

<webwork:textfield label=”Last Name” name=”shipToLastName”/>

<webwork:textfield label=”Address 1” name=”address1”/>

<webwork:textfield label=”Address 1” name=”address2”/>

<webwork:textfield label=”City” name=”city”/>

<webwork:textfield label=”State” name=”state”/>

<webwork:textfield label=”Zip Code” name=”zipCode”/>

<webwork:textfield label=”Country” name=”country”/>

</ww:property>

</table>

418 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 418

<webwork:hidden value=”id”/>”>

<input type=”submit” value=”Save”/>

</form>

</webwork:property>

</body>

</html>

Here, we show you only some parts of the JSP file, notably the part showing
the list of the Pets and the part mapping the HTML fields to the ShippingInfo
object. As you can see, by using the <webwork:property value=”order”>,
we refer to the properties of the Order object without prefixing each with the
order/. This tag puts the order on the top of the value stack, and any nested
property is by default accessible from this new top of value-stack value.

The Save Order button triggers the saveorder.action, which is mapped
to the SaveOrder action class:

<action name=”saveorder” class=”org.petsoar.actions.order.SaveOrder”>

<interceptor-ref name=”defaultStack”/>

<result name=”success”>

<param name=”location”>ordersaved.jsp</param>

</result>

<result name=”error”>

<param name=”location”>saveorder.jsp</param>

</result>

</action>

SaveOrder should validate the information entered by the user and save the
Order object in the database. We define a class similar to PetStore for handling
everything related to Orders. Let’s call this class OrderProcessing. Order-
Processing has methods such as getOrder(long id), saveOrder(Order
order), and cancelOrder(Order order). As with PetStore, we can actu-
ally turn OrderProcessing into an interface instead of a concrete class and
separate the interface of the OrderProcessing module from the concrete imple-
mentation. So, we define it like this:

package org.petsoar.order;

import java.util.List;

public interface OrderProcessing {

void addOrder(Order order);

void cancelOrder(Order order);

List getOrders();

Order getOrder(long id);

}

Adding a Shopping Cart 419

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 419

Having OrderProcessing defined, we can go back and implement the Save-
Order action class. A simple test case for SaveOrder checks the correct invoca-
tion of the addOrder()method of OrderProcessing from the SaveOrder class,
like this:

package org.petsoar.order;

import junit.framework.TestCase;

import com.mockobjects.dynamic.Mock;

import com.mockobjects.dynamic.P;

import org.petsoar.actions.order.SaveOrder;

import com.opensymphony.xwork.Action;

public class TestSaveOrder extends TestCase {

private SaveOrder action;

private Mock mockOrderProcessing;

protected void setUp() throws Exception {

super.setUp();

mockOrderProcessing = new Mock(OrderProcessing.class);

action = new SaveOrder();

action.setOrderProcessing(

(OrderProcessing)mockOrderProcessing.proxy());

}

public void testSaveOrder() throws Exception {

mockOrderProcessing.expect (“addOrder”, P.ANY_ARGS);

String result = action.execute();

assertEquals(Action.SUCCESS, result);

assertNotNull(action.getOrder());

mockOrderProcessing.verify();

}

}

As you can see, we haven’t yet defined any concrete implementation of
OrderProcessing, but thanks to mock objects, we can test the functionality
without it.

Finally, SaveOrder is implemented with the following code:

package org.petsoar.actions.order;

import org.petsoar.order.Order;

import org.petsoar.order.OrderProcessing;

import org.petsoar.order.OrderProcessingAware;

import com.opensymphony.xwork.ActionSupport;

public class SaveOrder extends ActionSupport

420 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 420

implements OrderProcessingAware {

private Order order = new Order();

private OrderProcessing orderProcessing;

private boolean delete, cancel;

private long id;

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

public void setOrderProcessing(OrderProcessing orderProcessing) {

this.orderProcessing = orderProcessing;

}

public Order getOrder() {

return order;

}

public void setDelete(String delete) {

// delete button pressed

this.delete = true;

}

public void setCancel(String cancel) {

// cancel button pressed

this.cancel = true;

}

public String execute() throws Exception {

if (!cancel) {

if (order.getId() == 0) {

orderProcessing.addOrder(order);

}

else {

Order existingOrder =

orderProcessing.getOrder(order.getId());

if (delete) {

orderProcessing.cancelOrder(existingOrder);

}

// we can do more fancy stuff here, for example

// filling the Order object with information from the

// user’s account.

}

}

return SUCCESS;

}

}

Adding a Shopping Cart 421

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 421

SaveOrder implements the OrderProcessingAware enabler interface. Here
again, we use the IoC framework included with WebWork. A concrete imple-
mentation class defined in the components.xml file is passed to the Save-
Order object by WebWork’s IoC framework.

The execute() method covers adding, canceling, and modifying orders.
If the ID parameter is not zero, the user has edited an already existing
order; otherwise, it’s a new order. The cancel property is true when the
Cancel button of the form is pressed. It takes the user back to the
vieworder.jsp page. When the delete property is true, the order is can-
celed by calling the cancelOrder() method of OrderProcessing.

package org.petsoar.order;

import org.petsoar.persistence.PersistenceAware;

import org.petsoar.persistence.PersistenceManager;

import java.util.List;

public class DefaultOrderProcessing

implements OrderProcessing, PersistenceAware {

private PersistenceManager persistenceManager;

public void setPersistenceManager(PersistenceManager pm) {

this.persistenceManager = pm;

}

public void addOrder(Order order) {

persistenceManager.save(order);

}

public void cancelOrder(Order order) {

persistenceManager.remove(order);

}

public List getOrders() {

return persistenceManager.findAll(Order.class);

}

public Order getOrder(long id) {

return (Order)persistenceManager.getById(Order.class, id);

}

}

All the pieces of the puzzles are in place. The whole checkout and save-
order scenario is complete.

422 Chapter 19

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 422

Summary

In this chapter, we first implemented a ShoppingCart interface for the shopping
cart information. Pets are added and removed to and from this ShoppingCart
interface. A simple implementation was provided for this interface called
SimpleShoppingCart that holds the information in memory.

Then we implemented the TestAddPetToShoppingCart and AddPetTo-
ShoppingCart classes. The AddPetToShoppingCart action class adds a Pet
to the shopping cart.

We then implemented the checkout and save-order functionality. Checkout
brings up a form where the user enters the shipping, billing, and credit-card
information and shows all the Pets in the [CE13]ShoppingCart to the user for
verification. This functionality was coded in an action class named CheckOut.

SaveOrder was then created to handle creating or canceling an order. A sep-
arate OrderProcessing interface was defined to handle the actual task of
adding and canceling an order.

All these classes dealt with an Order object. Order is a concrete Hibernate
persistable class. We used Hibernate’s component facility to create small
dependent classes for the BillingInfo, ShippingInfo, and CreditCardInfo
classes. We mapped the properties of these component classes to the same
Orders table that the Order itself is saved to.

Adding a Shopping Cart 423

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 423

23 463620 Ch19.qxd 10/28/03 8:55 AM Page 424

425

No matter what the size or scope of an application (whether it be a small inter-
nal project or a gigantic public online book store) security is one of the few
areas of application development that must be addressed. Most software
developers often overlook protecting the integrity of their information and
access to that information until near the end of a project, dismissing security as
a small feature that can be tossed in toward the home stretch. While security
may not be the most fun item on one’s development roadmap, it should not be
dismissed either. By not implementing security into an application until right
before a product release, it’s quite feasible that some security aspects could be
overlooked or improperly implemented.

In this chapter, we’ll look at the J2EE security model and some of the prob-
lems it has for application developers in the real world. Security is a compli-
cated issue, and there are many possible problems and solutions. We will build
only a very simple security system that complements the simplicity ethos of
the book so far. To complement our simple system, we’ll elaborate on a few
possible extensions to refactor it into a much more advanced security system.
We’ll also look briefly at OSUser as a way to provide a pluggable user-
management solution.

Securing the Application

C H A P T E R

20

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 425

Understanding J2EE Security

People who are new to J2EE often find that one of the most frustrating areas of
the specification (as of J2EE 1.4) is that the security model is very ill-defined. In
fact, two areas are mentioned in the “Future Directions” (J2EE.3.7) of the J2EE
1.4 specification:

■■ Instance-based access control — Controlling access to the data based on
the content of the data, not just the type of the data.

■■ User registration — A standard way to create new users.

Both of these features are going to be added sometime after J2EE 1.4, and
being that J2EE 1.3 servers are just appearing on the market, there is a clear
need for something that solves these goals using today’s standards. For exam-
ple, the Servlet specification claims that to secure the /secure directory such
that only authorized users in the secure-user role can have access, you would
add the following to web.xml:

<security-constraint>

<web-resource-collection>

<web-resource-name>secure</web-resource-name>

<description>Secure pages</description>

<url-pattern>/secure/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<description>Normal PAWS Users</description>

<role-name>secure-user</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>PetSoar</realm-name>

</login-config>

<security-role>

<description>An authorized user</description>

<role-name>secure-user</role-name>

</security-role>

So, what does all this mean? Well, there are a few things going on here. The
security-constraint element contains two subelements: web-resource-
collection and auth-constraint. The first element defines the URL pat-
tern that is to be secured, and the second element defines the role that has access
to the defined resource. The fact that resources can only be protected by a URL
pattern is very important, because it makes two issues very clear:

426 Chapter 20

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 426

■■ Securing applications by URL pattern does not allow for fine-grained
security, such as securing data based upon its content, as mentioned in
the J2EE 1.4 specification.

■■ Because securing by URL pattern is the only option, organizing your
JSP and Web pages in a good hierarchy becomes even more important,
as your organization choices will determine how you can secure your
application.

The next element is login-config, which contains two parts:
auth-method and realm-name. The auth-method, according to the
Servlet 2.3 specification, can either be BASIC or FORM. The realm-name can
be any value and is only used for the purposes of identifying the security
realm for the entire Web application. FORM and BASIC are different methods
used to present a login dialog box, such as a username and password input
box, using either an HTML form or the standard HTTP security that summons
the familiar popup window shown in Figure 20.1.

NOTE Only one logic-config element can be specified. This means that
your application can either present login via FORM or BASIC, but it must use
the same method for every security-constraint in your application.

The last element is security-role and this is nothing more than where
you define the roles that were mentioned in the security-constraint ele-
ment previously. In this particular example, the authentication constraint was
such that the requesting user must be in the secure-user role. So, in order to use
that role, it must be defined, including an optional description element.

Figure 20.1 A typical login dialog box using BASIC authentication

Securing the Application 427

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 427

That’s it! Using the previous example, any Web resource in the /secure
directory will require authentication from all users, with access granted only
to those who provide the correct password and also have the secure-user role
associated with them. But how are users actually authenticated, and how are
they associated with roles? The specification states that it is up to the J2EE ven-
dor (such as JBoss, Resin, or WebLogic) to do this work. How each vendor
attacks this problem is very different, so writing portable applications
becomes quite a challenge. Some vendors have very simple APIs that you can
integrate within just a couple hours of time, while other vendors have incred-
ibly complex APIs that could take weeks to even begin to understand. The
internal workings of the vendor match a secure request attempt, such as a
request to /secure, to these APIs so that developers can integrate custom
security implementations for their applications.

After a user has been authenticated and authorized to access a resource, the
username can be accessed via various J2EE APIs. In the case of Servlets, the
HttpServletRequest object has a method called getRemoteUser() that
returns the name of the authenticated user. Likewise, you can test if an authen-
ticated user is in a role with the isUserInRole() method. These two meth-
ods (and their respective cousins in the EJB APIs) are the only methods that
deal with security in J2EE.

To write portable and robust applications, the current J2EE APIs just don’t
offer enough power and flexibility. It is clear that something else is needed to
address these holes in J2EE. One solution is to not use J2EE security at all and
instead use your own custom security, including checking for the correct pass-
word and role on each request. While this method is very portable and very
flexible, it has two major drawbacks:

■■ You must be very careful to check security constraints in all of your
code.

■■ Integration from the Web-tier to the EJB-tier will not propagate security
information correctly.

■■ The J2EE APIs will no longer work, such that getRemoteUser() will
only return null and isUserInRole() will only return false.

What can be done to address the holes in the J2EE specification without
cutting loose any of its features? There are several possible solutions to this
problem, and we will examine the simplest one first.

Simplifying Security

Following the spirit of this book, for PetSoar we decided to opt for simplicity
above all else (while still meeting all application requirements, of course). Our
security implementation will have three main components:

428 Chapter 20

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 428

■■ A request wrapper to wrap all requests

■■ A security filter to wrap the requests with this wrapper

■■ A login filter to be applied to any paths that require login and to redirect
unauthenticated users to a login action

Let’s examine the request wrapper and see what it does and how it helps us
bypass existing J2EE security problems while still achieving simplicity.

Using the HTTP Request Wrapper
As stated before, J2EE’s security hooks are far too simple for most needs. But just
because they are simple does not mean we should abandon them entirely. It is
especially important to keep these methods working if there is a need to inte-
grate into some other third-party component that relies on them. By wrapping
incoming HttpServletRequest objects with an HttpServletRequestWrapper, we
can override the default security methods and link to our custom security, while
still providing access through the traditional APIs defined in the Servlet specifi-
cation. Let’s take a look at the wrapper class:

public class SecurityHttpRequestWrapper

extends HttpServletRequestWrapper {

private HttpServletRequest request;

public SecurityHttpRequestWrapper(HttpServletRequest request) {

super(request);

this.request = request;

}

public String getRemoteUser() {

String user = (String) request.getSession()

.getAttribute(LoginFilter.LOGIN_KEY);

return user;

}

public Principal getUserPrincipal() {

final String name = getRemoteUser();

return new Principal() {

public String getName() {

return name;

}

};

}

}

Securing the Application 429

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 429

As you can see, the request wrapper is very simple. It overrides only the two
methods related to security and lets all other method calls fall through to the
original HttpServletRequest object. Because the user’s username is stored in a
session attribute, we can look it up on demand and use it to provide a trivial
implementation for these security methods. Later, if there is a need to store
more information than just the username (for example, a complete User
object), modifying this code is as simple as changing getRemoteUser() to
get the username from that information object.

Now let’s see where this request wrapper comes into play, through the use
of a Servlet filter.

Using the Security Filter
The next step in this process is wrapping all requests with the request wrapper
we just examined. We used a very simple filter that does this. Note that we
have provided only the doFilter() method of SecurityFilter for the sake of
brevity:

public void doFilter(ServletRequest request,

ServletResponse response,

FilterChain chain)

throws IOException, ServletException {

HttpServletRequest req = (HttpServletRequest) request;

if (!(req instanceof SecurityHttpRequestWrapper)) {

req = new SecurityHttpRequestWrapper(req);

}

chain.doFilter(req, response);

}

If the request has already been wrapped, we do nothing. Otherwise, we
wrap the request and then let the filter chain carry on as normal, but giving the
newly wrapped request to the chain instead. This filter does a great job of
wrapping requests, but it does nothing for us in terms of actually securing con-
tent. Let’s now look at another filter we use to actually do this work.

Using the Login Filter
We now need a filter that listens to all requests and decides whether to allow
the request to continue or deny access and direct the user to a login page. This
is done with a LoginFilter.

430 Chapter 20

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 430

The LoginFilter will allow requests to continue that already have a
LOGIN_KEY (the username) set in the session, as we showed in the request
wrapper. It will also allow requests to continue that are either to the login JSP
or the login action. The login JSP is the page that prompts for the username
and password, whereas the login action is the WebWork action that authenti-
cates the input and associates the username in the session with a LOGIN_KEY.

Lastly, any request not to the login JSP or action, nor associated with the
correct LOGIN_KEY, will be denied access and directed to the login JSP. The
reason that the login JSP and login action must be treated in a special manner
is because if they weren’t, there would be no way to let an initial request to
authenticate come through — a chicken-and-egg problem indeed. Let’s look at
the code:

public class LoginFilter implements Filter {

public static String LOGIN_KEY = “loggedIn”;

Set extensions;

String loginAction;

String loginPage;

public void init(FilterConfig filterConfig)

throws ServletException {

loginPage = filterConfig.getInitParameter(“loginPage”);

loginAction = filterConfig.getInitParameter(“loginAction”);

extensions = new HashSet();

String ignoreExtensions =

filterConfig.getInitParameter(“ignoreExtensions”);

StringTokenizer st = new StringTokenizer(ignoreExtensions,

“, “);

while (st.hasMoreTokens()) {

extensions.add(st.nextToken().toLowerCase());

}

}

public void doFilter(ServletRequest request,

ServletResponse response,

FilterChain chain)

throws IOException, ServletException {

HttpServletRequest req = (HttpServletRequest) request;

HttpServletResponse res = (HttpServletResponse) response;

String servletPath = req.getServletPath();

String extension =

servletPath.substring(servletPath.lastIndexOf(‘.’)

Securing the Application 431

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 431

+ 1).toLowerCase();

if (servletPath.equals(loginAction)

|| servletPath.equals(loginPage)

|| extensions.contains(extension)) {

// we don’t need to secure this path

chain.doFilter(req, res);

} else

if (req.getSession(true).getAttribute(LOGIN_KEY) != null) {

// we have an authenticated user, keep going

chain.doFilter(req, res);

} else {

// no authenticated user, send them to the login page

res.sendRedirect(loginPage);

return;

}

}

public void destroy() { }

}

As already explained, the implementation is pretty straightforward to fol-
low. One thing to note is that there is support for ignoring certain extensions.
This is useful because besides not wanting to secure the login page and action,
you usually do not need to secure images, JavaScript files, and style sheets.
The LoginFilter allows you to easily do this.

Making It All Work in Harmony
Tying everything together is now nothing more than a simple exercise of mod-
ifying web.xml. But rather than modify the security parts of this XML file, we
will instead just apply these two filters on the URL patterns we want to secure.
This has the same effect as the Servlet spec’s support for security, but
automatically works on all application servers. Following are the two filter
declarations in web.xml:

...

<filter>

<filter-name>security</filter-name>

<filter-class>org.petsoar.security.SecurityFilter</filter-class>

</filter>

<filter>

<filter-name>login</filter-name>

432 Chapter 20

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 432

<filter-class>org.petsoar.security.LoginFilter</filter-class>

<init-param>

<param-name>loginPage</param-name>

<param-value>/login.jsp</param-value>

</init-param>

<init-param>

<param-name>loginAction</param-name>

<param-value>/login.action</param-value>

</init-param>

<init-param>

<param-name>ignoreExtensions</param-name>

<param-value>jpeg, gif, css</param-value>

</init-param>

</filter>

...

Now all that is needed is to map these filters to one or more URL patterns so
that they actually secure some content:

...

<filter-mapping>

<filter-name>security</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

<filter-name>login</filter-name>

<url-pattern>/inventory/*</url-pattern>

</filter-mapping>

...

What is happening here might not be entirely clear at first. Most important,
the security filter must be applied first, because the request wrapper is central to
the entire operation. It must also be applied to all URL paths so that even nonse-
cure content can still get security information from the HttpServletRequest if
needed.

The login filter, on the other hand, is only applied to URL patterns we want
to secure by username and password. Securing other URL patterns is as
simple as adding a new filter-mapping entry. One such example might be
securing /checkout/* so that all orders being checked out require that the
user be logged in first.

Securing the Application 433

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 433

Using a More Graceful Approach

While the simple solution that we outlined works well and takes advantage of
some nice technologies in the Servlet specification (filters and request wrap-
pers), it might be too simple for most real-world needs. Did you catch any of
the potential problems that could crop up if you employed this solution?

1. There are currently no “roles” so that there is only one level of security.
This is usually not scalable enough for real-world applications.

2. Assigning the filter to more and more URL patterns will quickly bloat
web.xml.

3. The URL patterns you can use in the Servlet specification are limited
(no regular expressions).

4. Sometimes it might be useful to protect individual WebWork actions
rather than URL patterns so we can reuse the action multiple times
without worrying if we have protected all the possible URLs.

434 Chapter 20

OSUSER

The simple security framework just outlined is fairly trivial and does about as
good of a job as the J2EE security model while providing a vendor-neutral
solution. However, writing your own security framework, especially if your
requirements are more in-depth, can be a serious undertaking. Thankfully,
there is help: OpenSymphony group’s creatively named OSUser module
(http://www.opensymphony.com/osuser).

OSUser has two main parts:

1. Application support — A set of generic user-management APIs that your
code talks to manage users.

2. Integration support — A set of APIs (called Adapters) to integrate into
your application server as well as any existing security infrastructure you
have in place.

OSUser also provides storage for your users, groups, and user profiles via a
set of storage Providers. There is currently a list of prewritten providers that
store this data in EJBs, LDAP, JDBC, Hibernate, OFBiz, Memory, Castor, XML files,
and other locations. Writing your own providers is a relatively trivial exercise.

The real advantage to OSUser is its centralized API for doing user
management, authentication, and authorization. Combined with its broad
application support (most major server vendors are supported), you can choose
to use your own security framework, J2EE’s built-in security, or a mix of both
with relative ease.

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 434

With these potential holes in mind (as well as any others you might see),
what are some possible solutions? Let’s look at some extensions that could be
made to our security framework. We won’t actually implement these exten-
sions, but rather present their possible positive outcomes and how they might
be used to address some of the original pitfalls we’ve identified.

The most obvious addition is to be able to associate roles to different defini-
tions of LoginFilter in web.xml by providing a required role in the init-param
of the filter. While this does work, web.xml will quickly become messy, and
much of the security logic will soon be stored in a deployment descriptor —
not something totally desirable if you have complicated security requirements.

Naturally, the next step is to have a configuration file to manage security
concerns. One possible way the configuration file might look is as follows:

<security-config>

<service class=”org.petsoar.security.service.WebworkService” />

<service class=”org.petsoar.security.service.PathService”>

<init-param>

<param-name>config.file</param-name>

<param-value>/security-paths.xml</param-value>

</init-param>

</service>

</security-config>

This make-believe configuration file is defining two possible services to
manage security. The WebWorkService might act as a guard against unautho-
rized WebWork action execution requests, regardless of the URL pattern. The
PathService, on the other hand, provides protection for URL paths as defined
in security-paths.xml, as shown here:

<path name=”admin”>

<url-pattern>**/admin/*</url-pattern>

<role-name>admin</role-name>

</path>

<path name=”loginrequired”>

<url-pattern>/inventory/*</url-pattern>

<url-pattern>/checkout/*</url-pattern>

<role-name>users</role-name>

</path>

What is interesting here is that unlike the URL patterns given in web.xml
previously, these patterns are more powerful. This is possible because, rather
than depending on the weak URL pattern support offered by the Servlet
specification, you can now write your own pattern-matching routines in your
custom security framework. We hope that these mock configuration files give

Securing the Application 435

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 435

you an idea of what is possible in the realm of security and provide some food
for thought when you begin securing your application.

Summary

In this chapter, we looked at the potential limitations of the current and future
J2EE security support. We then looked at a very simple implementation that
addresses some of those limitations and is used in PetSoar. Finally, we
acknowledged that such a simple approach isn’t necessarily feasible for all
applications and explored a few simple (but powerful) ideas for providing
more robust configuring in your security framework.

The most important thing we hope you take from this chapter is that secu-
rity is an important feature in your application and that you should address
the needs of your application above all else. If the J2EE security support does
not let you reach these goals, there are alternatives as we have shown you. And
even if you do use J2EE’s security, there are Open Source libraries that can
make implementing this task even easier.

436 Chapter 20

24 463620 Ch20.qxd 10/28/03 8:50 AM Page 436

437

Index

SYMBOLS
@hibernate.class.tag, 167, 417

proxy parameter of, 398
@hibernate.component tag, 415–416
@hibernate.property tag, 173, 174, 417
<body> tag, 144, 147
<cache> tag, 201
<cache:cache> tags, 201
<class> element, 58, 78
<component> element, 60
<content> tag, 147
<decorator:useHtmlPage> tag, 146
<discriminator> element, 78
<field/> element, 390
<flush> tag, 202
<frameset> tag, 148
<hibernate-mapping> element, 58
<id> element, 59–60
<jsp:param> tag, 132
<junit> task, 32–34
<key> element, 73
<many-to-many> element, 73
<meta> tag, 146, 147
<one-to-many> element, 73
<page:applyDecorator> tag, 143, 144

<parameter> tag, 147
<property> element, 59
<session-factory> element, 62
<set> element, 73
<subclass> element, 78
<usecache> tag, 202
/secure directory, 426, 428

A
AbstractShoppingCartTest,

defining, 412
acceptance tests, 232

unit tests versus, 19–20
AcceptanceTestSuite, 233
action(s)

field-driven, 93
model-driven, 93
retrieving properties of, 101
using validators against, 124

action aliasing, 98
action class, for retrieving Pets, 369
action tag, 104
action validator, 124
ActionChaining, 96
ActionContext, 94

retrieving information from, 100

25 463620 index.qxd 10/28/03 8:50 AM Page 437

438 Index

ActionProxy, 93–94, 104
actions, tasks performed by, 85
ActionSupport, 121
add() method, 280

implementing, 285
addBeanPropertySetter()

method, 215
addCallMethod() method, 215
addCallParam() method, 215
addDocument() method, 157, 379
addObjectCreate() method, 215
add-ons

Cactus, 38
JUnitPerf, 38
jWebUnit, 37
XMLUnit, 37

addOrder() method, 420
AddPet action

combining views of, 315–317
creating, 310–313
creating views for, 313–315
execute() method of, 342
flow chart of, 317
HTML view of, 314
INPUT view of, 314
invoking ViewPet with, 321, 323–324
refactoring, 338–339
standardization of, 336–338
SUCCESS view of, 314–315
updating, 343–344

addPet() method, modifying, 304
AddPetToShoppingCart action class,

408, 410
implementation of, 409–410
removing duplicated code from,

412–413
addSetNext() method, 215
AgentDecoratorMapper, 149
AIM, 192
“all” cascade, 74
analyzers, and full-text searches,

395–396

Ant. See Jakarta Ant
Anthill, 194
AOP. See Aspect-Oriented

Programming
APIs, 428

logging, 211–212
.append() clause, 207
application development. See software

development
args() method, 49
argument constraint, 48–49
ArrayList, 399–400
Aspect-Oriented Programming

(AOP), 118
assertEquals() method, 22, 23, 28
assertFalse() method, 28
assertion methods, 23, 28–29
assertNotNull() method, 29
assertNotSame() method, 29
assertNull() method, 28
assertSame() method, 29
assertTrue() method, 28
attributes

column, 59, 73
length, 59
mapping, 389
name, 58, 72
not-null, 59
syntax of, 168–170
table, 58
table-name, 73

authentication constraints, login
dialog box, 427

automated build tools, 224
Avalon Framework, 266
Avalon Phoenix, 266

B
bag, 210
batchtest feature, 233–234
Beanie class, 256
BeanMap, 210

25 463620 index.qxd 10/28/03 8:50 AM Page 438

Index 439

BeanPropertySetterRule, 216
BeanUtils, 393
<body> tag, 144, 147
boolean eval() method, 48
brief formatter, 33
browsers, 366–369
buffer, 210
Bugzilla, 193
build tools, automated, 224
builder classes

in Commons Lang, 206–207
reflection methods of, 208–209
tasks handled by, 207

buildQuery() method, 159

C
cache duration, 203
cache key, 202
cache scope, 202
<cache> tag, 201
<cache:cache> tag, 201
CacheFilter, 205
caching. See OSCache
Cactus, 38
CallMethodRule, 216
CallParamRule, 217
cancelOrder() method, 422
cascade types, 74
Cascading Style Sheets (CSS), 150

function of, 355
categories

adding to store, 364
browsing list of, 364–366

Category class, 387
Caucho Resin, 231

deploying applications with, 235–236
launching from IDEA, 236

Chain of Command design pattern, 148
CheckOut action

and Order objects, 418–419
testing of, 411–412

CheckOut class, 46–47, 412–413
adding setter methods on, 47
adding to xwork.xml file, 417
testing mock interaction, 48

child content, 137
child decorator, 142
<class> element, 58, 78
class hierarchy, 76
class interactions, 43
ClassConfiguration objects

creating, 391–392
FieldConfiguration objects, 391
passing to utility method, 390–391
retrieval of, 390

classes
Beanie, 256–257
builder. See builder classes
Checkout, 48
com.mockobjects.dynamic.Mock, 47
ContactInfo, 57, 166
creating persistent, 55–57
CustomAnalyzer, 162–163
DateConverter, 116
ExceptionUtils, 206
Folder, 70–71
Head, 256–257
IndexReader, 161
interfaces versus, 245
Mock, 48
NestableException, 206
PhoneNumber, 57
StringUtils, 206
SystemUtils, 206
TestCsvParser, 30
TestSomething, 30
TokenFilter, 163

close() method, 379
code

duplicated. See duplication
generation of. See code generation
narrowing requirements in, 243
refactoring into include files, 130

code duplication. See duplication

25 463620 index.qxd 10/28/03 8:50 AM Page 439

440 Index

code generation
for calling LuceneSearcher, 374–375
and component increases, 260
for creating folders, 73
for LazyLoaderList classes, 398–399
for paging through List of Pets, 397
and Search classes, 372
source communication in, 189
with XDoclet. See XDoclet

collection types, selecting, 73
collections, 112
Collections. See Commons Collections
CollectionUtils, 210
column attribute, 59, 73
com.mockobjects.contraint.Constraint

interface, 48
com.mockobjects.dynamic.Mock

class, 47
command pattern, 87
commit() method, 65
Commons Collections, 209–210. See

also Jakarta Commons
Commons Digester. See also Digester

framework
function of, 213
method-calling rules, 216–217
object model example, 213–215
object-creation rules, 216
property-setting rules, 216
rules of, 215–216
stack-manipulation rules, 217
understanding rules of, 216–217

Commons Lang, 205–206
builder classes in, 206–209
classes of, 206

Commons Logging, 211–212
communication

as a learning tool, 190
methods of, 188
real-time discussion, 192
source, 189

ComparatorChain, 210
compile-time includes, 132
CompleteTestSuite, 233
<component> element, 60
component tags, 349, 350
ComponentManagers, 264
components

defined, 255, 416
handling dependencies of, 256–259
and Inversion of Control (IoC). See

Inversion of Control (IoC)
life cycle of, 259–260
relationships between, 137
testing of, 266–268

CompleteTestSuite, 233
components.xml file, 410
composite design pattern, 134–135

combining with decorator patterns,
135–137

concrete class, 76
config target, 171
ConfigDecoratorMapper, 148
configuration file, 435
connection pooling, 62–63
constraints, argument, 48
constructors, 113
ContactInfo class, 57, 166
contacts, 72
Container Managed Persistence

(CMP), 79–80
containers

configuring in XWork, 263–264
defined, 261
defining scope with, 262
and dependencies, 262
EJB, 261
function of, 258–259

<content> tag, 147
context variables, 113
Continuous Integration, 193–194
contract, 242

25 463620 index.qxd 10/28/03 8:50 AM Page 440

Index 441

controller layer, 85
countRows() method, 280

removing, 295–296
create() method, 178
createActionProxy () method, 94
createAnalyzer() method, 378–379

defining, 396
createDocument() method, 387,

388, 389
refactoring, 390

createDocumentForObjectFrom-
ClassConfiguration() method,
390, 391

enhancing, 392–393
createWriter() method, 378
CreditCardInfo class, 416–417
CRUD

create(c) part of, 310–317
delete(d) part of, 329–333
read(r) part of, 317–324
refactoring, 333–343
UML model for, 339, 340
update(u) part of, 324–328

CruiseControl, 194
CSV parser

parsing multiple lines, 25–26
testing, 21–23

CustomAnalyzer class, 162–163
customer tests. See acceptance tests
CVS, 191

D
DAO Frameworks, 81
Data Access Objects (DAO) pattern,

276
database

HypersonicSQL (HSQL), 55
mapping classes to, 57–60

database schema, 283
database tables, mapping hierarchies

of objects to, 76–78
DateConverter class, 116

decorator design pattern, 133–134
combining with composite patterns,

135–137
DecoratorMappers, 148–149
decorators, 133–134

accessing data in, 147
applying to inline fragment of page,

144–145
containing child component, 136
creating, 140–144
final page with inline, 145
includes versus, 359
locating, 143
mapping, 148–149
PetSoar, 360
process of applying, 138–139
use of JSP tags, 146

<decorator:useHtmlPage> tag, 146
default rule, 117
DefaultAnalyzer, 397
DefaultLuceneDocumentFactory, 387
createDocument() method of, 389
creating object of, 388

“delete” cascade, 74
delete() method, 66
dependencies, 40, 42

in containers, 262
management of. See Inversion of

Control (IoC)
using a container for, 258–259
using a factory for, 257
using a registry for, 257–258

deployment-oriented @attribute, 181
deployment-oriented metadata, in

source code, 182
design patterns

Chain of Command, 148
combining, 135–137
composite, 134
decorator, 133–134

development speed, 226–227
and tests, 232

25 463620 index.qxd 10/28/03 8:50 AM Page 441

442 Index

development teams. See also software
development

communication in, 188–190
“hit by a truck” test, 190

development-oriented @attribute, 181
digester.addX() method, 215
Digester framework. See also

Commons Digester
creating a ClassConfiguration object

in, 391–392
direct instantiation for, 256–257

discriminator column, 77, 78
dispatchers, 99–100
dispose() method, 120, 263
Document doc(int n) method, 160
Documents, removing from index, 161
doFilter() method, 430
domain model

advantages of, 269–270
bottom up approach, 272, 274
downside to, 270
layer-driven versus feature-driven

approach to, 270–272, 273
maintainability of, 306–308
middle out approach, 272, 274
performance considerations, 306–308
top down approach, 272, 274

domain object
creating, 405
deleting, 377

dot notation, 110
duplication, 129

removing, 295–296, 334–336,
382–383, 385, 396, 412

dynamic proxies, 46

E
Eclipse, 193

JUnit integration in, 35
Web site for, 222

EditPet action
checking validity of, 327
process flow of, 324–325
updating, 344

editpet.jsp, 353
as collection of components, 354
improving appearance of, 351

EJB, 79–80
EJB containers, 261
EJBDoclet, 179–180
EJBQL, 80
elements

<class>, 58, 78
<component>, 60
<discriminator>, 78
<hibernate-mapping>, 58
<id>, 59
<key>, 73
<many-to-many>, 73
<one-to-many>, 73
<property>, 59
<session-factory>, 62
<set>, 72, 73
<subclass>, 78

elements() function, 76
enabler interface, 263–264
enterprise application, 53–54
eq() method, 49
equals() method, 14, 206
ERROR view, 320
event-driven builds, 194
exceptions

handling, 285
handling with JUnit, 29

ExceptionUtils class, 206
execute () method, 410, 422

of AddPet action, 342
converting String properties into, 115
in HelloWorld action, 90
and interceptors, 118
return value of, 96
validation in, 121

expect() method, 48
expectAndReturn() method,

294, 368
expectations, 45, 48

verification of, 49–50
Expression Validator, 125

25 463620 index.qxd 10/28/03 8:50 AM Page 442

Index 443

F
factory class, 257
FactoryCreateRule, 216
fail() method, 29
<field/> element, 390
field validator, 124
field values, testing of, 380
field-driven action, 93
fields, 157
file structure

selection of, 230
structuring by deployment, 229–230
structuring by type, 227–229

files
components.xml, 410
configuration, 435
high-level types of, 228
include, 130–132
jar. See jar files
listpets.jsp, 401–402
Merge, 182–183
organization of. See file structure
for security, 435
temporary, storage of, 228–229
web.xml, 432–433, 435
xdoclet.jar, 172
XML, 390–392
xwork.xml configuration

find() method, 64, 68, 69, 75
findAll() method, 289

modifying, 298
fixture, 34
float score(int n), 160
flush() method, 65, 67
<flush> tag, 202
Folder class, 70–71
folders

nested, 71–72
one-to-many, 73
parent, 71–72
relationship with contacts, 72
relationships among, 72

foobar() method, 179
form elements, 106

form widgets, 347–351
format() method, 116
formatter elements, 33
Fowler, Martin, 193
<frameset> tag, 148
FrameSetDecoratorMapper, 148
Framework, 266. See also DAO

Frameworks
full-text searches, 395–397

G
get() method, 72, 100
getCategory() method, 368
getClassConfiguration()

method, 390
getConnection() method, 280
getFirstName() method, 167
getFolders() method, 174
getHat() method, 257
getName() method, 110
getPets() method, 308
getRemoteUser() method, 428, 430
getStringContentOfAttribute()

method, 393
getter methods, 415–416
getXxx() method, 110
Green Bar, 24, 250
GUI

combining design patterns, 135–137
composite design pattern, 134–135
creating, 401–403
decorators, 133–134

H
hash Code() method, 14, 206
Hat class, 256–257, 258
Head class, 256–257, 260
Hibernate, 4, 14

benefits of, 307–308
cascade types in, 74
cleaning up, 286
collection types, 73
compatibility of, 55
configuring, 60–63

25 463620 index.qxd 10/28/03 8:50 AM Page 443

444 Index

Hibernate (continued)
creating folders in, 73–74
creating persistent classes in, 55–57
DAO Frameworks versus, 81
default mapping, 59
deleting object from database, 66–67
description of, 54
discriminator column, 76, 77, 78
dispatcher, 88
EJB versus, 79–80
generating database schema in, 63
getting Connection object from,

280–281
HSQL database. See HypersonicSQL

(HSQL) database
ID generation schemes supported

by, 59
implementing PersistenceManager

with, 279–288
invoking SchemaUpdate with, 283
jar files for, 60–61
JOD versus, 81
“lazy loading” scheme, 75, 307–308
lazy-loading of Pets in, 398
load() method, 64, 67, 75, 293
mapping classes to database, 57–60
mapping hierarchies of objects, 76–78
mapping with XDoclet, 173–175
obtaining a session in, 63–64
and Order objects, 416–417
persisting relationships between

objects, 70–76
and Plain Old Java Objects

(POJOs), 80
query language. See Hibernate Query

Language (HQL)
querying persistent objects, 68–70
retrieving objects from database, 67
<session-factory> element, 62
storing objects in, 64–67
toolset, 79
using a dialect in, 62
Web site for, 54

Hibernate Query Language (HQL),
55, 76

executing a statement in, 68
@hibernate.class.tag, 167, 417

proxy parameter of, 398
@hibernate.component tag, 415–416
HibernateDoclet, 181
<hibernate-mapping> element, 58
HibernatePersistenceManager,

397–398
adding findAll() method to,

289–290
adding method to, 292–293
adding test to, 289
and Lists of Longs, 398

@hibernate.property tag, 173, 174, 417
HotSwap, 236
HQL queries. See Hibernate Query

Language (HQL)
HSQL database. See HypersonicSQL

(HSQL) database
HTML

adding references to style sheet
in, 356

copying and pasting, 129
KISS principle for, 151
parsing of, 359

HTML tags, 146
HTML view, 314
HTTP request wrapper, 429–430
hybrid approach, 225–227
HypersonicSQL (HSQL) database, 55,

61, 279

I
<id> element, 59–60
ID generation schemes, 59–60
IDEA, 193

launching Caucho Resin from, 236
IDEs. See integrated development

environments
implementation, 365, 366
include files, 130–132

25 463620 index.qxd 10/28/03 8:50 AM Page 444

Index 445

includes, decorators versus, 359
index() method, 378
indexDir attribute, 385
IndexDir property, 372, 377
indexes

adding objects to, 379
creating in setUp() method,

381–382
tokenizing fields of, 397

indexing. See LuceneIndexer
IndexReader, 155, 161
IndexSearcher, 155

creating, 375
IndexWriter, 155

creating, 378
init() method, 120, 263, 281–282
instance-based access control, 426
instant messaging (IM) applications,

192
int length() method, 160
integrated development environments

(IDEs), 34, 193
and Ant, 225–227
and automated build tools, 224
deploying applications with, 235–236
limitations of, 223
list of available, 222
and Web Application Resources

(WARs), 223
IntelliJ IDEA

JUnit integration in, 36
Web site for, 222

interactions, class, 43
interceptors, 118–120
interfaces, 245
Internet Relay Chat (IRC), 192
Inversion of Control (IoC)

benefits of, 260
and concrete implementation

classes, 422
disadvantages of, 261–262
in EJB containers, 261

framework, 15
passing ShoppingCart and PetStore

objects in, 410
and XWork. See XWork

invoiceCustomer() method, 48–49
IoC. See Inversion of Control
isUserInRole() method, 428
iterator tag, 103–104

J
Jabber, 192
Jakarta Ant

and IDEs, 225
<junit> task, 32–34
limitations of, 225
and testing, 233

Jakarta Ant build script, 170–173
Jakarta Avalon, 266
Jakarta Commons, 4, 14. See also

Commons Collections
Jakarta Commons BeanUtils, 393
Jakarta Lucene. See Lucene
Jakarta ORO, Web site for, 251
Jakarta RegExp project, Web site

for, 251
Jakarta Struts, 89
jar files

for Hibernate, 60–61
junit, 32
xdoclet, 172

Java API, 205
Java Development with Ant, 171
java target, 171
JavaBean standard, 110
JavaDoc tags, 168

adding to Pet class, 284
JavaScript calendar program, 348
java.util.List property, 104
JBuilder, Web site for, 222
JCS, 307
JDO, 81
JDODoclet, 180–181

25 463620 index.qxd 10/28/03 8:50 AM Page 445

446 Index

JDOQL, 81
JIRA, 193
JMXDoclet, 180
join table, 72
JPetStore, 10
JPublish, 88
JSP, 85

example views in, 101
server-side includes of, 132
standard expression languages, 110
tags of. See JSP tags

JSP tags
in action, 114–115
action tag, 104
for decorators, 146
expanding to HTML form

elements, 106
if/elseif/else tags, 103
iterator tag, 103–104
property tag, 102
push tag, 102, 115
set tag, 102–103
specifying theme attribute in, 107

jsp:include, 349, 358
<jsp:param> tag, 132
JSTL, 110
J2EE

APIs, 428
connection pooling in, 63
new security features of, 426
running application in, 62
security limitations of, 428
security model of, 426–428
vendors of, 428

J2EE Open Source Toolkit: Building an
Enterprise Platform with Open Source
Tools, 222

JUnit, 4, 16
assertion methods, 28–29
batchtest feature of, 233–234
exception handling, 29
extensions for, 37–38

features of, 21
Green Bar, 24
IDE integrations, 34
integrating, 34–37
problems with testing state, 39–41
Red Bar, 23–24, 26–27
running a test with, 23–25
running multiple tests with, 25–28
and test runners, 30–34
and test suites, 30, 232–233
Web site for, 20

JUnit in Action, 38
junit jar file, 32
JUnit support, 187
<junit> task, 32–34
JUnitPerf, 38
jWebUnit, 37

K
<key> element, 73
Keyword fields, 157

L
Lang. See Commons Lang
LanguageDecoratorMapper, 149
late binding, 257
layers, of importance, 270
“lazy loading” scheme, 75, 307–308
LazyLoaderList class, 398–400
length attribute, 59
List of Longs, 375

turning into Pets, 398
List of Pets, paging through, 397
ListCategories action class, 363
ListPets, 366–367
listpets.jsp file, 401–402
Lists, creating, 112
load() method, 64, 67, 75, 293
Log4j, 211
LoggingAPI, 211
LoggingInterceptor, 119–120
login filter, 430–432, 435

25 463620 index.qxd 10/28/03 8:50 AM Page 446

Index 447

login JSP, 431–432
login window, 128, 129
login-config element, 427
LoginFilter, 431–432
LogKit, 211
loop test, 199–201
LowerCaseFilter, 163
Lucene, 4. See also LuceneDocument-

Factory interface; LuceneIndexer;
LuceneSearcher

Analyzer classes, 163
API of, 155
built-in analyzers, 156
and concurrent access to index

files, 159
customizing the tokenization

process, 162–163
elements of, 155
field types in, 156–157
function of, 154
indexing a document, 155–159
object query languages versus, 164
online availability, 154
reindexing documents with, 161
removing indexed documents

with, 161
searching documents, 159–160
searching in, 154–155
SQL SELECT statements versus, 164
TokenFilter classes, 163
using advanced searching, 161–162

Lucene Fields, 380
LuceneDocumentFactory interface
createAnalyzer() method in, 396
creating, 387–388
<field/> element, 390
and LuceneIndexer, 394–395
mapping attributes to, 389

LuceneIndexer
and code duplication, 382–384
creating, 377–378

enhancing test in, 380
function of, 376–377
implementing, 376–386
and location of index files, 377
refactoring to work with Lucene-

DocumentFactory interface,
394–395

reviewing code in, 380
single implementation of, 396
testing, 395

LuceneSearcher
and code duplication, 382–384
implementing, 372–376
keeping independent from

PersistenceManager, 376
recalling test for, 379
single implementation of, 396
stubbing of, 373

LuceneSearcher.search()
method, 375

M
mailing lists, 192
maintainability, 11, 306–308
Majordomo, 192
<many-to-many> element, 73
mappers, 148–149
mapping

of files. See mapping files
with XDoclet, 173

mapping files, 284
creating, 57–60
default, 59
extracting tables and columns

from, 64
Maps, creating, 112
Mastering Jakarta Struts, 89
matchAndReturn method, 51
merge files, 182–183
<meta> tag, 146
method calls, 111
method-calling rules, 216–217

25 463620 index.qxd 10/28/03 8:50 AM Page 447

448 Index

methods
add(), 280, 285
addBeanPropertySetter(), 215
addCallMethod(), 215
addCallParam(), 215
addDocument(), 157
addObjectCreate(), 215
addOrder(), 420
addPet(), 304
addSetNext(), 215
args(), 49
assertEquals(), 22, 23, 28
assertFalse(), 28
assertion, 23, 28–29
assertNotNull(),29
assertNotSame(), 29
assertNull(), 28
assertSame(), 29
assertTrue(), 28
boolean eval(), 48
buildQuery(), 159
cancelOrder(), 422
close(), 379
commit(), 65
communication, 188
countRows(), 280, 295–296
create(), 178
createActionProxy(), 94
createAnalyzer(), 378–379, 396
createDocument(), 387, 388,

389, 390
createDocumentForObjectFrom-

ClassConfiguration(), 390,
391, 392–393

createWriter(), 378
delete(), 66
digester.addX(), 215
dispose(), 120, 263
Document doc(int n), 160
doFilter(), 430
eq(), 49
equals(), 14, 206

execute(). See execute() method
expect(), 48
expectAndReturn(), 294, 368
fail(), 29
find(), 64, 68, 69, 75
findAll(), 289, 298
float score(int n), 160
flush(), 65, 67
foobar(), 179
format(), 116
get(), 72, 100
getCategory(), 368
getClassConfiguration(), 390
getConnection(), 280
getFirstName(), 167
getFolders(), 174
getHat(), 257
getName(), 110
getPets(), 308
getRemoteUser(), 428, 430
getStringContentOf-

Attribute(), 393
getXxx(), 110
hash-Code(), 14, 206
index(), 378
init(), 120, 263, 281–282
int length(), 160
invoiceCustomer(), 48–49
isUserInRole(), 428
load(), 64, 67, 75, 293
LuceneSearcher.search(), 375
main(), 62
matchAndReturn(), 51
not(), 49
Object.equals(), 28
openIndexWriter, 156
optimize(), 158, 159
parse(), 116, 216
proxy(), 48
reflection, 208–209
save(), 64, 65, 66
saveOrUpdate(), 66, 74

25 463620 index.qxd 10/28/03 8:50 AM Page 448

Index 449

Search(), 401
Search.execute(), 401
Session.saveOrUpdate(), 285
set, 72
setCategory(), 304
setCategoryId(), 368, 372
setName(), 121
setUp(). See setUp() method
setXxx(), 110
static, 247, 257
strip(), 249, 252–253
subList(), 403
tearDown(). See tearDown()

method
testCheckOut(), 412
testIndexNewObject(), 377
testListAllPets(), 366
testListCategories, 365
testListPetsOfAnUnknown

Category(), 368
testListPetsOfCategories(),

368
tokenStream(), 163, 397
toString(), 14, 208
update(), 66, 67
verify(), 49

MiddleGen, 274
downloading, 79

Mock class, 48
Mock Maker, 246
mock objects. See mocks
Mock Objects, 4
Mock Objects Library, 45

and argument constraints, 48–49
Checkout class, 46–47
components of, 46
creating mocks in, 47
defining expectations in, 48
setting up return values in, 50–51
substituting objects in, 47–48
using dynamic mocks in, 46–51
verifying expectations in, 49–50

mock PetStore, 310
mocks

and code testing, 244–245
of configuration files, 435–436
creating, 47
example scenario, 43–44
function of, 44
modifying, 300
for PetStore, 366, 409
PetStore objects, 364
providing expectations to, 48
return values for, 50–51
Searcher interface, 371–372
for shopping carts, 412
for ShoppingCart class, 409
and test suites, 247
using the Mock Objects Library. See

Mock Objects Library
Web site for, 42

model layer, 84
model-driven action, 93
Model-View Controller (MVC)

business logic and, 86
controller layer of, 85
flow of control through, 86
functions of, 83–87
interfaces, 86
and JSP tags, 102–104
model layer of, 84
OpenSymphony WebWork, 4
reasons to use, 86
view layer of, 85

MVC. See Model-View Controller

N
name attribute, 58, 72
namespaces, 100
NestableException class, 206
nested folders, 71–72
.Net PetShop, 10
NetBeans, Web site for, 222

25 463620 index.qxd 10/28/03 8:50 AM Page 449

450 Index

“none” cascade, 74
NoOpLog, 211
not() method, 49
not-null attribute, 59

O
Object Graph Navigation Language

(OGNL), 109–110
advanced expressions in, 111–115
basic expressions in, 110–111
contact variables in, 113
dealing with collections in, 112
Lists and Maps in, 112
method calls, 111
properties of, 110
root variable in, 113
static access, 111
validation of, 120–126

object models, 53–54
ObjectCreateRule, 216
object-creation rules, 216
Object.equals() method, 28
objects
Page, 138, 145, 146
PageParser, 145
plain old Java (POJOs). See Plain Old

Java Objects (POJOs)
OGNL. See Object Graph Navigation

Language
<one-to-many> element, 73
Open Source library. See Mock Objects

Library
Open Source Software (OSS)

advantages of, 3
design and development

philosophies, 5–6
products of, 4
using, 3–5

openIndexWriter method, 156
OpenSymphony OSCache, 4
OpenSymphony SiteMesh. See

SiteMesh

OpenSymphony WebWork, 4
optimize() method, 158, 159
Order object, 411

classes of, 413
defined, 414–415
in Hibernate, 416–417
long-term persistence for, 413
and SaveOrder action class, 419
status fields, 413
successful creation of, 418–419
on vieworder.jsp page, 418–419

OrderProcessing class, 419–420
OrderProcessingAware enabler

interface, 422
org.apache.commons.collections, 210
org.apache.commons.lang, 206
org.apache.commons.lang exception,

206
OSCache

advanced features of, 204–205
cache duration, 203
cache key, 202
catching time example, 203–204
function of, example, 198–199
loop test for, 199–201
scope, 202
tag library, 201–202
Web site for, 205

OSDecoratorMapper, 149
OSUser module, 434

P
packages, 91
<page:applyDecorator> tag,

143, 144
page content, 137
page decorator, 137
Page object, 145, 146

accessing data from, 147
content extracted into, 138

PageDecoratorMapper, 148
PageParser object, 145

25 463620 index.qxd 10/28/03 8:50 AM Page 450

Index 451

pagination
function of, 397
implementing, 397–401
supporting, 403

pagination mechanism, 363
<parameter> tag, 147
parent folders, 71–72
parse() method, 116, 216
parse stack, 215
parsed expression, 109
parsing, 21–23

of HTML, 359
of multiple lines, 25–26
in SiteMesh, 145

passing test, 25
PathService, 435
pattern match, 141
Patterns of Enterprise Application

Archietechture, 258
persistence, 417

complexities of, 53–54
of EJB containers, 261
for Order objects, 413

PersistenceManager, 376, 398
adding method to interface, 292–293
creating mock class of, 277
creating mock implementation of,

290–291
implementing with Hibernate,

279–288
interface, 276
testing of, 297

persistent classes, creating, 55–57
Pet class

adding fields to, 287–288
adding primary key to, 284

pet stores. See also PetStore
adding Pet to, 275–279, 288
JPetStore, 10
and ListCategories action class, 364
.Net PetShop, 10

PetMarket, 11
PetStore, 10
XPetStore, 10–11

PetMarket, 11
Pets

action class for retrieving, 369
adding to shopping cart, 408–409,

410
adding to store, 275–279, 288,

310–317
browsing list of, 366–369
caching of, 307
creating GUI for browsing, 401–403
displaying, 317
editing, 324–328
editing with Cascading Style

Sheets, 356
editing without Cascading Style

Sheets, 355
grouping in parent category, 301–306
indexing of. See LuceneIndexer
lazy-loading of, 398
ListPets test for, 366–369
loading large numbers of, 397
retrieval of, 289–295
retrieving a list of matched, 370
searching for. See LuceneSearcher
searching for any type of data in,

386–395
and SimpleShoppingCart classes,

407–408
on vieworder.jsp page, 418–419

PetSoar project
application startup time, 187
architecture of, 12–14
and Continuous Integration, 193–194
decorator, 360
deployment of, 235–236
development of, 185–187
development tool use, 195
file structuring, 227–231
and IDEs, 193

25 463620 index.qxd 10/28/03 8:50 AM Page 451

452 Index

PetSoar project (continued)
implementing, 15
improving development speed

for, 186
issue tracking, 193
knowledge management, 191–192
mailing lists for, 192
maintainability of, 11
platform for, 12
real-time discussion for, 192
reducing time required to build

application for, 186–187
requirements of, 11–12
searching system, 363
security considerations. See PetSoar

project security
source communication, 189
source-control system for, 191
style sheet sample, 357–358
testing framework in, 232
testing of, 16
Web site for, 7

PetSoar project security
combining elements of, 432–433
components of, 428–429
framework extensions, 435–436
and HTTP request wrapper, 429–430
potential problems of, 434–435

PetStore, 10. See also pet stores
adding method to, 291
adding pets to, 310–317
configuring mock instance of, 368
filter for, 430
handling Orders in, 419
initializing, 294–295
and ListPets, 366–369
login filter, 430–432
mocks of, 409
providing a mock Persistence-

Manager to, 293
searching for Pets in. See Lucene-

Indexer; LuceneSearcher

PetStoreAware interface, 410
Phoenix, 266
PhoneNumber class, 57
plain content pages, 133
plain formatter, 33
Plain Old Java Objects (POJOs), 14,

70–71
and Hibernate, 80

PorterStemFilter, 163
Pramati Studio, Web site for, 222
PrintableDecoratorMapper, 148
programmer tests. See unit tests
projection, 112
properties, in Object Graph Naviga-

tion Language (OGNL), 110
<property> element, 59
property tag, 102
property-setting rules, 216
providers, 434
proxy() method, 48
push tag, 102, 115

Q
queries

advanced, 162
parsing, 375

Query object, creating, 159–160
querying

with HQL, 76
persistent objects, 68–69

QueryParser, 375

R
real-time discussion, 192
Red Bar, 23–24, 26–27, 249–250
reflection methods, 208–209
registry, 257–258
RemovePet action

creating stubs, 331
removing duplication in, 334–335
testing of, 329–330

request wrapper, 429–430

25 463620 index.qxd 10/28/03 8:50 AM Page 452

Index 453

return values, 45, 91
ReverseComparator, 210
RobotDecoratorMapper, 149
root variable, 113
runtime includes, 132

S
save() method, 64, 65, 66
SaveOrder action class, 419

implementing, 420–421
and OrderProcessingAware enabler

interface, 422
testing, 420

saveOrUpdate() method, 66, 74
“save-update” cascade, 74
SchemaUpdate, 63

benefits of, 307
invoking, 283

Search class, 370
search engines. See LuceneSearcher
Search() method, 372
Search.execute() method, 401
Searcher interface, 370–371

mocks for, 371–372
searches

for any type of data in Pets, 386–395
ensuring correct performance of, 370
full-text, 395–397
importance of system for, 363
with LuceneSearcher. See Lucene-

Searcher
for Pets. See LuceneIndexer; Lucene-

Searcher
SearchHitValueObject, 375
/secure directory, 426, 428
security

of applications, by URL pattern, 427
authentication constraint, 427
combining elements of, 432–433
configuration file, 435
of EJB containers, 261
elements for, 426–427
filter for, 430

framework extensions, 435–436
with HTTP request wrappers,

429–430
importance of addressing, 425
with J2EE, 426–428
limitations in J2EE, 428
login filter, 430–432
mapping of filters, 433
PathService, 435
in PetSoar project, 428–433
of /secure directory, 426
simplification of, 428–433
using OSUser module for, 434
and Web page organization, 427
writing your own framework for, 434

security filters, 430
mapping, 433

security-constraint element,
426–427

security-role element, 427
Separation of Concerns, 262
SequencedHashMap, 210
server-side includes, 131, 132
service-oriented architecture, 12
services, 255

in PetSoar, 12–14
Servlet container, 139
ServletDispatcher, 100
ServletDispatcherResult, 97
ServletRedirectResult, 97
<session-factory> element, 62
SessionFactory interface, 64
sessions, creating, 64
Session.saveOrUpdate()

method, 285
set, 72
<set> element, 73
set method, 72
set tag, 102–103
setCategory() method, 304
setCategoryId() method, 368, 372
setName() method, 121

25 463620 index.qxd 10/28/03 8:50 AM Page 453

454 Index

SetNextRule, 217
SetPropertyRule, 216
SetRootRule, 217
SetTopRule, 217
setUp() method, 36, 381, 388

checking initialization of, 247
initializing PetStore in, 294–295
refactoring, 395
removing, 386

setXxx() method, 110
shopping cart

adding Pets to, 410
checking out, 411–422
creating, 405–408
defined, 405
implementing at domain-model

level, 405
Order object for, 413–415

ShoppingCart class
abstract classes for, 413
adding Pets to, 408–409
defining, 405, 406
display of Pets added to, 418–419
as interface, 405–406
mocks of, 409
operations supported by, 405–406

ShoppingCart object, mocks of, 412
ShoppingCartAware interface, 410
show_calendar() JavaScript

function, 348–349
SimpleLog, 211
SimpleShoppingCart class

creating, 405–406
and Pets, 407–408

SimpleShoppingCart object,
creating, 410

Singleton Pattern, 247
SiteMesh, 4, 15

composing pages in, 140–144
creating a decorator in, 140–144
downloading, 137
function of, 137

fundamentals of, 138
getting to content, 145–148
inline decorator support, 352–353
locating decorators in, 143
mapping decorators, 148–149
tips for using, 149–151
and user interfaces, 359

SlowUnitTestSuite, 232
software applications, testing of, 5
software development

application startup time, 187
Aspect-Oriented Programming

(AOP), 118
and automated build tools, 224
communication in, 188
and Continuous Integration, 193–194
file structuring, 227–231
hybrid approach to, 225–227
and IDEs, 193
improving development speed

for, 186
investing in speed of, 226–227
issue tracking, 193
knowledge management, 191–192
mailing lists for, 192
real-time discussion for, 192
reducing time required to build

application for, 186–187
security issues, 425
source communication, 189
source-control systems for, 191,

234–235
testing before. See Test Driven

Development (TDD)
top-down approach to, 246
types of testing, 19–20

source code, and XDoclet, 177
source communication, 189
Source Configuration Management

(SCM) systems, 191
source-control systems, 191

advantages of, 234

25 463620 index.qxd 10/28/03 8:50 AM Page 454

Index 455

source-exploration time, 186
SQL, aid for search capabilities, 153
stack context, 114
stack-manipulation rules, 217
StandardAnalyzer, 375

creating, 379
limitations of, 162
for tokenizing text, 156

StatefulHome interface, 178
static methods, 247, 257
status fields, 413
StopFilter, 163
StringTokenizer class, 24
StringUtils class, 206
strip() method, 249

adding requirement to, 252–253
Struts, 89
subclass, 76
<subclass> element, 78
subList() method, 403
submit requests, handling, 322–323
swing runner, 31
SystemUtils class, 206

T
table attribute, 58
table-name attribute, 73
table-per-class-hierarchy mapping

type, 76, 77
tags

action, 104
<body>, 144, 147
<cache>, 201
<cache:cache>, 201
<content>, 147
<decorator:useHtmlPage>, 146
doubleselect, 107
<flush>, 202
<frameset>, 148
@hibernate.class, 167

@hibernate.property, 173, 174, 417
HTML, 146
if/elseif/else, 103
iterator, 103–104
Javadoc, 168
JSP. See JSP tags
<jsp:param>, 132
<meta>, 146
<page:applyDecorator>, 143, 144
<parameter>, 147
property, 102
push, 102, 115
set, 102
<usecache>, 202

targets, 171
TDD. See Test Driven Development
tearDown() method, 36, 286, 381

checking initialization of, 247
removing, 386

temporary files, storage of, 228–229
test data class, mapping for, 390
Test Driven Development (TDD),

16, 239
approach to building in, 272
cycle of, 248
enhancing functionality of, 252–254
example scenario of, 249–252
and flow of design, 376
narrowing code requirement in,

242–243
software design through, 242
techniques for using, 243–247
testing cycle of, 247–254
top-down approach in, 246

test runners, 30
Ant JUnit task, 32–34
IDE integrations, 34
swing runner, 31
text runner, 31

25 463620 index.qxd 10/28/03 8:50 AM Page 455

456 Index

test suites
creating, 30
defined, 30
ensuring efficiency of, 247
in JUnit, 232–233
reasons for using, 233–234

TestCheckOut
defining, 411
removing duplicated code from, 412

testCheckOut() method, 412
TestCsvParser class, 30
Test-Driven Development by Example, 239
testIndexNewObject() method, 377
testing. See also acceptance tests;

unit tests
with Ant, 233
before versus after development,

240–241
of components, 260
of EditPet action, 324–326
of EJB, 80
example scenario using TDD,

249–252
of interactions, 41–42
of PersistenceManager, 297
of pet store, 276–277
purpose of, 240
of RemovePet action, 329–330
of state. See testing state
strategies for, 19–20
techniques for, 243–247
with Test Driven Development

(TDD). See Test Driven Develop-
ment (TDD)

of Test Driven Development (TDD)
cycle, 247–254

with test runners, 30–34
with test suites, 30, 233–234
top-down approach to, 246
of ViewPet action, 318–319
of XWork components, 266–268

testing interactions, 41–42
testing state

alternative to, 41–42
problems with, 39–41
testing interaction versus, 42

testListAllPets() method, 366
testListCategories, 365
testListPetsOfAnUnknown

Category()method, 368
testListPetsOfCategories()

method, 368
TestLuceneIndexer, 381, 395

adding a test method to, 386–387
TestLuceneSearcher, 381

independence from index files, 382
tests. See also testing; unit tests

acceptance, 19–20, 232
compiling, 364
customer. See tests, acceptance
as documentation, 241–242
failing, 244
programmer. See unit tests
testListCategories, 365
unit. See unit tests

TestShoppingCart class, 405–406
TestSList Pets test, 366
TestSomething class, 30
Text fields, 157
text runner, 31–32
themes, 107–108
ThreadLocal, 94
tight coupling, 256
time and date page, 141
TokenFilter classes, 163
TokenStream, 397
tokenStream() method, 163, 397
toString() method, 14, 208
Transparent Persistence, 54
type conversion, 115–117

25 463620 index.qxd 10/28/03 8:50 AM Page 456

Index 457

U
UI tags, 347
UI templates, 357
UnIndexed fields, 157
unit testing. See also unit tests

acceptance testing versus, 19–20
with JUnit. See JUnit

unit tests, 19, 232. See also JUnit
for CheckOut actions, 411–412
before coding, 310
compiling, 364
for creating LazyLoaderLists,

399–400
dependencies in, 40
enhancing functionality of, 252–254
with Hypersonic SQL (HSQL)

database, 279
independence of, 381
for indexes, 379
of interaction between ListPets and

PetStore, 366
for LuceneDocumentFactory,

388–389
for LuceneIndexer, 380–381
for LuceneSearcher, 374
narrowing code requirement in,

242–243
for retrieving matched Pets, 370
running, 23–25
running multiple, 25–28
for SaveOrder action class, 420
setting up, 36
for shopping carts, 405–406
simplifying, 245
as source of documentation, 241–242
successive runs of, 381
tearing down, 36
techniques for using, 243–247
tools for, 37

writing, 21–23, 242
writing before software

development, 240–241
UnitTestSuite, 232
UnStored fields, 157
update() method, 66, 67
URL patterns

protection for, 435
securing, 433

<usecache> tag, 202
user interface

and Cascading Style Sheets (CSS),
355–358

design of, 355–358
improving, 358–361
improving appearance of, 351

user registration, 426
utility component, 197–198

OSCache, 198–205
utility libraries, 14

V
validation,

adding, 120–122
application of, 123–125

validation framework, 340, 342–343
ValidationInterceptor, 123
validators

built-in, 123–124, 125
custom, 124–125
Expression Validator, 125
types of, 124

value stack, 113–115
Velocity, 97, 350

creating themes in, 107–108
example views in, 101–102

VelocityResult, 97
verify() method, 49
view layer, 85

25 463620 index.qxd 10/28/03 8:50 AM Page 457

458 Index

vieworder.jsp page, 411
ViewPet action

create views for, 319–320
creating, 317–324
ERROR view of, 320
flow chart of, 324
implementing, 319
invoking with AddPet action, 321,

323–324
refactoring, 338–339
removing duplication in, 334
SUCCESS view of, 320
updating, 344

W
Web development

component-based, 104–109
creating themes in, 107–108
type conversion, 115–117
writing custom components, 108

Web pages
components, 135
organization of, 427
typical, 134

Web sites
for Eclipse, 222
for Hibernate, 54
for IntelliJ IDEA, 222
for Jakarta ORO, 251
for Jakarta RegExp project, 251
for JBuilder, 222
for JUnit, 20
for mocks, 42
for NetBeans, 222
for OSCaceh, 205
for PetSoar project, 7
for Pramati Studio, 222
for WebWork 2, 102

WebDoclet, 180
Web-page layout system. See SiteMesh

WebWork, 15
component tags, 349
creating a SimpleShoppingCart

object in, 410
form elements of, 106
IoC container for, 263
and JSP tags, 102–104
and submit requests, 322
templating language of, 350
UI tags, 347
validation framework of, 340,

342–343
value stack, 113–115
Web site for, 102

WebWork actions, 408–410
webwork:component tag, 348
web.xml file

filter declarations in, 432–433
LoginFilter in, 435

Wiki, 191–192

X
XDoclet, 4, 14, 79

@attributes of, 181
EJBDoclet, 179–180
extracting metadata from source

code, 182
function of, 165–166
generating sophisticated artifacts in,

175–179
@hibernate.class.tag, 167
HibernateDoclet, 181
JDODoclet, 180–181
JMXDoclet, 180
mapping with, 173–175
merge points, 182–183
running, 170–173
source code generated by, 177
subtasks, 179–181
syntax of attributes, 168–170

25 463620 index.qxd 10/28/03 8:50 AM Page 458

Index 459

tasks and subtasks, 179–181
using effectively, 181–183
WebDoclet, 180

XDoclet subtasks
dao, 179
deploymentdescriptor, 179
entitybmp, 179
entitypk, 179
homeinterface, 179
idometadata, 181
jsptaglib, 180
localhomeinterface, 179
localinterface, 179
mbeaninterface, 180
mlet, 180
remoteinterface, 179
session, 179
strutsconfig, 180
strutsform, 180
strutsvalidationxml, 180
utilobject, 179
valueobject, 179
webxml, 180

XDoclet tags, benefits of, 307
xdoclet.jar file, 172
XJavadoc, 172
XML configuration, 390
XML files, 390

loading into ClassConfiguration
object, 391–392

xml formatter, 33
XML pattern, 215
XML tags, 249–251
XMLUnit, 37
XPetStore, 10–11

XWork, 15, 83, 88, 261
action chaining, 96
action composition, 91–93
actions of, 89–95
advantages of, 89
alternative framework to, 89
calling actions from, 93–94
ComponentManagers, 264
configuration(s) of, 91, 98–99
configuring containers in, 263–264
default result type for, 98
dispatcher of, 99
examining results of, 96–98
features of, 88
function of, 87–88
HelloWorld action in, 90–91
interceptors in, 118–119
and inversion of Control (IoC)

framework, 120
IoC implementation, 263
modularity of, 88
results, 96
ServletActionContext, 100
testing components of, 266–268
type-conversion system for, 115
using ActionContext in, 94–95
using parameters, 94–95
validation framework of, 122–123,

340, 342–343
validation of, 120–126

Xwork commands, 341
xwork.xml configuration file,

402–403, 417

Y
Yahoo, 192

25 463620 index.qxd 10/28/03 8:50 AM Page 459

	Cover
	Contents
	Introduction
	Part 1. Introduction
	Overview of the Book
	Using Open Source Technologies
	Understanding Design and Development
	Philosophies
	Test First
	Less Is More
	Always Ask the Dumb Questions

	Exploring the PetSoar Project
	Sticking to the Basics
	Summary

	Application Overview
	Looking at Yet Another Pet Store?
	Understanding the Importance of Maintainability
	Understanding the Requirements of PetSoar
	Examining the Architecture and Technologies
	Looking at the Architecture
	Looking at Utility Libraries
	Using Persistence and Searching
	Using the Web Front End

	Testing
	Summary

	Part 2. Building Your Open Source Toolbox
	Unit Testing with JUnit
	Types of Testing
	Using JUnit
	Features of JUnit
	Writing a Unit Test
	Running a Unit Test
	Running Multiple Tests
	Everything You Need to Know about JUnit

	Summary

	Testing Object Interactions with Mocks
	Testing Object Interactions
	Exploring Some Pitfalls of Testing State
	Exploring the Alternative: Testing Interactions

	Using Mock Objects
	Example Scenario
	Understanding the Role of a Mock Object
	Understanding the Mock Objects Library
	Using Dynamic Mocks

	Summary

	Storing Objects with Hibernate
	Understanding the Complexities of Persistence
	Persisting Objects with Hibernate 2
	Creating the Persistent Classes
	Mapping the Classes to a Database
	Configuring Hibernate
	Obtaining a Session
	Storing Objects in the Database
	Retrieving Objects from the Database
	Querying Persistent Objects
	Persisting Relationships Between Objects

	Persisting Hierarchies of Objects
	Understanding the Hibernate Toolset
	Comparing Hibernate with Competing Technologies
	Hibernate vs. EJB
	Hibernate vs. JDO
	Hibernate vs. DAO Frameworks

	Summary

	Model View Controller with WebWork
	Understanding Model View Controller (MVC)
	Examining the Model Layer
	Examining the View Layer
	Examining the Controller Layer
	Tying It All Together
	Looking at Reasons to Use MVC

	Understanding MVC, WebWork, and XWork
	Exploring XWork
	Exploring WebWork

	Taking an In- depth Look at Actions
	A Simple XWork Example
	Configuring XWork
	Structuring Your Actions (Action Composition)
	Calling an Action from XWork
	Using Parameters and the ActionContext

	Applying Newton’s Third Law of Physics
	Understanding XWork Results and Action Chaining
	Examining WebWork Results
	and the Servlet Environment
	Configuring WebWork
	Understanding the Role of the Dispatcher
	Exploring Example Views in JSP and Velocity
	Looking at Component- Based Web Development

	Expressing Yourself
	Using Basic Expressions
	Using Advanced Expressions
	Understanding the ValueStack

	Exploring Type Conversion
	Digging into a Date Example
	Specifying Default Conversion Rules
	Specifying New Conversion Rules

	Separating Concerns with Interceptors
	Looking at Configuration and Interceptor Stacks
	Using LoggingInterceptor
	Building Your Own Interceptor

	Validation — A Powerful Interceptor
	Exploring an Example without
	XWork Validation Framework
	Exploring an Example with XWork Validation Framework
	Using Built- In and Custom Validators
	Using the Expression Validator

	Summary

	Simplifying Layout with SiteMesh
	Identifying Problems with Layout
	Using the Object- Oriented Solution
	Decorator Design Pattern
	Composite Design Pattern
	Combining the Patterns

	Implementing the Solution with SiteMesh
	SiteMesh Fundamentals
	Creating a Decorator
	Composing Pages
	Exploring SiteMesh

	Using Tips and Tricks
	Group Decorators Together
	Don’t Be Afraid to Include
	CSS Is Your Friend
	Minimize HTML
	Separate Your Concerns

	Summary

	Adding Search Capabilities with Lucene
	Understanding the Complexities of Searching
	Introducing Lucene
	Understanding the Elements of Lucene
	Indexing a Document
	Searching Documents
	Reindexing and Removing an Indexed Document
	Using Advanced Searching
	Customizing the Tokenization Process

	Summary

	Generating Configuration Files with XDoclet
	Introducing XDoclet
	Understanding Attribute Oriented
	Programming with XDoclet
	Understanding the Syntax of Attributes
	Running XDoclet
	Using Advanced Hibernate OR Mapping with XDoclet
	Using XDoclet for Generating More
	Sophisticated Artifacts
	Understanding XDoclet Tasks and Subtasks
	Using XDoclet Effectively

	Summary

	Communication and Tools
	Exploring PetSoar Development
	Managing Imperfect Communication
	Communicating in Every Way
	Using Source Communication
	Using Communication as a Learning Tool

	Exploring Our Toolbox
	Source Configuration Management — CVS
	Knowledge Management — Wiki
	Mailing List — Majordomo
	Real- time Discussion — IRC and Instant Messaging
	IDEs — IDEA and Eclipse
	Issue Tracking and Task Management — JIRA

	Using Continuous Integration
	Tying the Tools Together
	Summary

	Time- Saving Tools
	Understanding Utility Components
	Understanding OSCache
	Introducing SampleNews. com
	Using the Loop Test
	Exploring the OSCache Tag Library
	Understanding OSCache Concepts
	Looking at a Caching Time Example
	Looking at Advanced OSCache Features

	Understanding Commons Lang
	Exploring Most Useful Classes
	Using Builder Classes

	Understanding Commons Collections
	Understanding Commons Logging
	Looking at Advantages of Commons Logging
	Looking at a Simple Example

	Understanding Commons Digester
	Looking at a Digester Example
	Understanding Digester Rules

	Summary

	Part 3. Developing the Application
	Setting Up the Development Environment
	Working from Within the IDE
	The Problem: IDEs Don’t Automate
	The Solution: Automated Build Tools

	Using Ant for All Your Building Needs
	The Problem: Ant Isn’t the Silver Bullet
	The Solution: Use What Makes Sense

	Using the Hybrid Approach
	Laying Out Your Project
	Structuring by Type
	Structuring by Deployment
	Picking a Structure
	And What about PetSoar?

	Managing Unit Tests
	Understanding Test Types
	Examining Test Suites, JUnit, and Batch Testing

	Using Version Control
	Deploying PetSoar
	Summary

	Understanding Test Driven Development
	Why Test First?
	Testing First vs. Testing Last
	Narrowing the Requirements

	Understanding Testing Techniques
	Place Unit Tests in the Same Package As Your Code
	Never Skip Failing Tests
	Isolate the Untestable Using Mock Objects
	When to Use Interfaces and Classes
	Stick with Simplicity
	Work from the Top Down
	Use Lots of Small Objects
	Ensure That Your Test Suite Runs Quickly
	Avoid Statics and Singletons

	Testing the TDD Cycle
	Example Scenario Using TDD
	Example Scenario Revisited
	Enhancing the Functionality

	Summary

	Managing Lifecycles and Dependencies of Components
	Understanding Components and Services
	Handling Dependencies
	Using Direct Instantiation
	Using a Factory
	Using a Registry
	Using a Container

	Understanding the Component Lifecycle
	Understanding Inversion of Control
	Examining the Benefits
	Exploring the Disadvantages

	Understanding Separation of Concerns
	Using Containers to Define Scope
	Using XWork’s Container Implementation
	Configuring the Container
	Understanding How the Container Works

	Testing XWork Components
	Summary

	Defining the Domain Model
	Considering the Advantages of a Domain Model
	Tackling the Layers
	Comparing a Layer- Driven vs. Feature- Driven Approach
	Choosing Bottom Up, Top Down, or Middle Out

	Identifying the Current Goal
	Adding a Pet to the Store
	Implementing the PersistenceManager Using Hibernate
	Where We Are

	Retrieving Pets
	Retrieving a Single Pet
	Where We Are

	Persisting the Categories
	Where We Are
	Implementing the Category- Pet Relation
	Where We Are

	Performance and Maintainability Considerations
	Summary

	Creating a Web- Based Interface
	Adding a Pet
	Creating the AddPet Action
	Creating Views for AddPet
	Tying It All Together

	Displaying a Pet
	Creating the ViewPet Action
	Refactoring the Actions

	Editing a Pet
	Checking Validity
	Tying It All Together — Take II

	Get that Pet Out of Here!
	Refactoring the CRUD
	Removing Duplication in ViewPet and RemovePet
	Odd One Out
	Performing One Last Refactor
	Decoupling the Validation

	Changing the Pet
	Summary

	Defining Navigation, Layout, Look, and Feel
	Componentizing Form Widgets
	Forming a Better Look and Feel
	Using a Touch of Style
	Navigating to a Better User Interface
	Summary

	Implementing Browse and Search Capabilities
	Defining the Application Requirements
	Browsing the List of Categories
	Browsing the List of Pets
	Searching the Store for Pets
	Implementing LuceneSearcher
	Implementing LuceneIndexer
	Where We Are
	Implementing Searching of Any Type of Data
	Where We Are
	Implementing Full- Text Searches
	Implementing Pagination

	Tying It All Together
	Summary

	Adding a Shopping Cart
	Creating a Shopping Cart
	Creating the WebWork Actions
	Checking Out the Shopping Cart
	Summary

	Securing the Application
	Understanding J2EE Security
	Simplifying Security
	Using the HTTP Request Wrapper
	Using the Security Filter
	Using the Login Filter
	Making It All Work in Harmony

	Using a More Graceful Approach
	Summary

	Index

